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The O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. Experimental
evidence for the formation of an intermediate 1-oxaspiro[2,5]octadienyl radical
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A product study on the reactivity of a 1,1-diarylalkoxyl radical bearing 2,2-diphenylcyclopropyl groups in
the para-positions has been carried out. The exclusive formation of a product deriving from cyclopropyl
ring-opening has been observed, indicating that 1,1-diarylalkoxyl radicals exist in equilibrium with a
bridged 1-oxaspiro[2,5]octadienyl radical. This represents the first experimental evidence in support of
the stepwise nature of the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals.

� 2010 Elsevier Ltd. All rights reserved.
Alkoxyl radicals represent an important class of highly reactive
oxygen-centered radicals. These species play a key role in several
chemical and biological processes, such as the photooxidation of
hydrocarbons in the atmosphere,1 lipid peroxidation,2 and the
anti-malarial action of natural endoperoxides,3 and are involved
moreover in a variety of synthetically useful procedures.4 The
uni- and bimolecular reactions of alkoxyl radicals have been thor-
oughly investigated. Relevant examples of the former processes in-
clude intramolecular hydrogen atom transfer5 and C–C bond
fragmentation reactions (b-scission,6 and O-neophyl rearrange-
ment7). Typical bimolecular processes are represented by hydro-
gen atom abstraction reactions8 and by addition reactions to C@C
double bonds,9 organophosphorus,10,11 and organoboron
compounds.11

The O-neophyl rearrangement of alkoxyl radicals, first de-
scribed by Wieland in 1911,12 has received since then considerable
attention. This process converts an oxygen-centered radical into a
significantly more stable (benzylic) carbon-centered radical
through a 1,2-aryl shift, and has been observed for radicals that
bear at least two aryl groups in the a-position (Eq. (1)).
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A strongly debated question has been whether this rearrange-
ment is a concerted or a stepwise process,13–16 with a bridged
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1-oxaspiro[2,5]octadienyl radical structure representing, respec-
tively, a transition state or a discrete intermediate along the
reaction pathway. Only recently, however, computational studies
have provided convincing support to the hypothesis that the
O-neophyl rearrangement of 1,1-diarylalkoxyl radicals proceeds
through the reversible formation of an intermediate 1-oxaspi-
ro[2,5]octadienyl radical as described in Scheme 1.17,18

No conclusive experimental evidence in support of this hypoth-
esis is instead available. In this context, it is, however, important to
point out that a recent product and time-resolved kinetic study
carried out by some of us has clearly shown that the para-(2,2-
diphenylcyclopropyl)cumyloxyl radical (1�) exists in equilibrium
with a 2,2-dimethyl-1-oxaspiro[2,5]octadienyl radical (2�).19

Cumyloxyl radicals are known to undergo C–CH3 b-scission as
the exclusive unimolecular reaction (Scheme 2, path a),6f,6g,20,21

and the failure to observe the O-neophyl rearrangement (Scheme
2, path b) reasonably reflects the lower stability of the 2-phen-
oxy-2-propyl radical as compared to the 1-phenoxy-1-phenylalkyl
one displayed in Scheme 1.

Along this line, by introducing a 2,2-diphenylcyclopropyl repor-
ter group in the para-position, the exclusive formation of product A
(Scheme 3) has been observed.19

A result that has been interpreted in terms of the existence of an
equilibrium between 1� and 2� followed by a fast 2,2-diphenylcy-
clopropylcarbinyl?1,1-diphenyl-3-butenyl radical rearrangement
in the latter radical. The failure to observe para-(2,2-diphenylcyclo-
propyl) acetophenone (B) deriving from C–CH3 b-scission in 1�

clearly indicates that in the presence of two phenyl substituents
on the cyclopropyl group, this process does not compete with
cyclopropyl ring-opening in 2�.22
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On the basis of these results, it seemed particularly interesting
to extend the approach described above for the cumyloxyl radical
also to 1,1-diarylalkoxyl radicals, in order to establish if a bridged
1-oxaspiro[2,5]octadienyl radical is actually an intermediate in the
O-neophyl rearrangement, and moreover, if the existence of this
equilibrium is a general feature of arylcarbinyloxyl radicals. For
this purpose, we have synthesized cyclopropyl[bis(4-(2,2-diphe-
nylcyclopropyl)phenyl)]methanol (3), precursor of the 1,1-diary-
lalkoxyl radical 3�, whose structure is displayed below.24 3� has
been generated photochemically by visible light irradiation of
CH2Cl2 solutions containing 3, (diacetoxy)iodobenzene (DIB), and
I2. It is well established that under these conditions the DIB/I2 re-
agent converts alcohols (ROH) into hypoiodites (ROI) that are then
photolyzed to give alkoxyl radicals (RO�), precursors of the ob-
served reaction products.14b,25,26

Under these conditions the reaction of 3 led to the exclusive
formation of 2-cyclopropyl-2-(4-(2,2-diphenylcyclopropyl)phenyl)-
6-(3-hydroxy-3,3-diphenylpropyliden)-1-oxaspiro[2,5]octa-4,7-
diene (C) (Scheme 4).

Product C has been isolated by preparative TLC and unambigu-
ously characterized by 1H NMR, 13C NMR, and correlation NMR (see
Supplementary data). In addition, the spectroscopic data are in
excellent agreement with those obtained previously for the struc-
turally related product 2,2-dimethyl-6-(3-hydroxy-3,3-diphenyl-
propyliden)-1-oxaspiro[2,5]octa-4,7-diene (A), obtained after
visible light irradiation of 2-(4-(2,2-diphenylcyclopropyl)phenyl)-
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2-propanol in the presence of DIB and I2 as described above
(Scheme 3).19

The formation of C can be rationalized in terms of cyclopropyl
ring-opening in the intermediate-bridged radical 4� (Scheme 5,
pathways b–d, Ar = 4-(2,2-diphenylcyclopropyl)phenyl),27 in line
with the hypothesis of the existence of an equilibrium between
this radical and 3�. This finding clearly represents the first experi-
mental evidence for the formation of an intermediate-bridged 1-
oxaspiro[2,5]octadienyl radical in the reactions of 1,1-diarylalkoxyl
radicals, in full agreement with the computational results dis-
cussed above.17,18
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The failure to observe the product deriving from O-neophyl shift
in 3� (cyclopropyl 4-(2,2-diphenylcyclopropyl)phenyl ketone (D))
indicates that in the presence of two phenyl substituents on the
cyclopropyl group, 4� undergoes cyclopropyl ring-opening (path
b) significantly faster than the opening of the oxirane ring (path
e). This is in line with the estimated rate constants for the two pro-
cesses, as it can be reasonably assumed that cyclopropyl ring-
opening occurs with the same rate in 4� and 2� (for which a value
of k � 7:5� 108 s�1 has been estimated),19 whereas that rate con-
stants for O-neophyl shift in 1,1-diarylalkoxyl radicals bearing
electron-releasing ring substituents have been shown to be
62.4 � 106 s�1,14b and a similar (or lower) value can be reasonably
predicted also for 3�.

In conclusion, by means of a detailed product study, convincing
experimental evidence in support of an equilibrium between 1,1-
diarylalkoxyl radical 3� and an 1-oxaspiro[2,5]octadienyl radical
has been obtained, in agreement with previous computational re-
sults. The existence of this equilibrium appears to be a general fea-
ture of arylcarbinyloxyl radicals, strongly supporting the
hypothesis that the O-neophyl rearrangement of 1,1-diarylalkoxyl
radicals proceeds through the formation of a bridged 1-oxaspi-
ro[2,5]octadienyl radical intermediate.
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