27 research outputs found

    Bioinformatic Inference of Specific and General Transcription Factor Binding Sites in the Plant Pathogen Phytophthora infestans

    Get PDF
    Plant infection by oomycete pathogens is a complex process. It requires precise expression of a plethora of genes in the pathogen that contribute to a successful interaction with the host. Whereas much effort has been made to uncover the molecular systems underlying this infection process, mechanisms of transcriptional regulation of the genes involved remain largely unknown. We performed the first systematic de-novo DNA motif discovery analysis in Phytophthora. To this end, we utilized the genome sequence of the late blight pathogen Phytophthora infestans and two related Phytophthora species (P. ramorum and P. sojae), as well as genome-wide in planta gene expression data to systematically predict 19 conserved DNA motifs. This catalog describes common eukaryotic promoter elements whose functionality is supported by the presence of orthologs of known general transcription factors. Together with strong functional enrichment of the common promoter elements towards effector genes involved in pathogenicity, we obtained a new and expanded picture of the promoter structure in P. infestans. More intriguingly, we identified specific DNA motifs that are either highly abundant or whose presence is significantly correlated with gene expression levels during infection. Several of these motifs are observed upstream of genes encoding transporters, RXLR effectors, but also transcriptional regulators. Motifs that are observed upstream of known pathogenicity-related genes are potentially important binding sites for transcription factors. Our analyses add substantial knowledge to the as of yet virtually unexplored question regarding general and specific gene regulation in this important class of pathogens. We propose hypotheses on the effects of cis-regulatory motifs on the gene regulation of pathogenicity-related genes and pinpoint motifs that are prime targets for further experimental validation

    To make or take: bacterial lipid homeostasis during Infection

    Get PDF
    Bacterial fatty acids are critical components of the cellular membrane. A shift in environmental conditions or in the bacterium’s lifestyle may result in the requirement for a distinct pool of fatty acids with unique biophysical properties. This can be achieved by the modification of existing fatty acids or via de novo synthesis. Furthermore, bacteria have evolved efficient means to acquire these energy-rich molecules from their environment. However, the balance between de novo fatty acid synthesis and exogenous acquisition during pathogenesis is poorly understood. Here, we studied the mouse fatty acid landscape prior to and after infection with Acinetobacter baumannii, a Gram-negative, opportunistic human pathogen. The lipid fluxes observed following infection revealed fatty acid- and niche-specific changes. Lipidomic profiling of A. baumannii isolated from the pleural cavity of mice identified novel A. baumannii membrane phospholipid species and an overall increased abundance of unsaturated fatty acid species. Importantly, we found that A. baumannii relies largely upon fatty acid acquisition in all but one of the studied niches, the blood, where the pathogen biosynthesizes its own fatty acids. This work is the first to reveal the significance of balancing the making and taking of fatty acids in a Gram-negative bacterium during infection, which provides new insights into the validity of targeting fatty acid synthesis as a treatment strategy.Felise G. Adams, Claudia Trappetti, Jack K. Waters, Maoge Zang, Erin B. Brazel, James C. Paton, Marten F. Snel, Bart A. Eijkelkam

    Is the eye a window to the brain in Sanfilippo syndrome?

    Get PDF
    Published online: 17 November 2020Sanfilippo syndrome is an untreatable form of childhood-onset dementia. Whilst several therapeutic strategies are being evaluated in human clinical trials including i.v. delivery of AAV9-based gene therapy, an urgent unmet need is the availability of non-invasive, quantitative measures of neurodegeneration. We hypothesise that as part of the central nervous system, the retina may provide a window through which to 'visualise' degenerative lesions in brain and amelioration of them following treatment. This is reliant on the age of onset and the rate of disease progression being equivalent in retina and brain. For the first time we have assessed in parallel, the nature, age of onset and rate of retinal and brain degeneration in a mouse model of Sanfilippo syndrome. Significant accumulation of heparan sulphate and expansion of the endo/lysosomal system was observed in both retina and brain pre-symptomatically (by 3Β weeks of age). Robust and early activation of micro- and macroglia was also observed in both tissues. There was substantial thinning of retina and loss of rod and cone photoreceptors by ~ 12Β weeks of age, a time at which cognitive symptoms are noted. Intravenous delivery of a clinically relevant AAV9-human sulphamidase vector to neonatal mice prevented disease lesion appearance in retina and most areas of brain when assessed 6Β weeks later. Collectively, the findings highlight the previously unrecognised early and significant involvement of retina in the Sanfilippo disease process, lesions that are preventable by neonatal treatment with AAV9-sulphamidase. Critically, our data demonstrate for the first time that the advancement of retinal disease parallels that occurring in brain in Sanfilippo syndrome, thus retina may provide an easily accessible neural tissue via which brain disease development and its amelioration with treatment can be monitored.Helen Beard, Glyn Chidlow, Daniel Neumann, Nazzmer Nazri, Meghan Douglass, Paul J. Trim, Marten F. Snel, Robert J. Casson and Kim M. Hemsle

    Developing a multivariable prediction model for functional outcome after reperfusion therapy for acute ischaemic stroke: study protocol for the Targeting Optimal Thrombolysis Outcomes (TOTO) multicentre cohort study

    Get PDF
    INTRODUCTION: Intravenous thrombolysis (IVT) with recombinant tissue plasminogen activator (rt-PA) is the only approved pharmacological reperfusion therapy for acute ischaemic stroke. Despite population benefit, IVT is not equally effective in all patients, nor is it without significant risk. Uncertain treatment outcome prediction complicates patient treatment selection. This study will develop and validate predictive algorithms for IVT response, using clinical, radiological and blood-based biomarker measures. A secondary objective is to develop predictive algorithms for endovascular thrombectomy (EVT), which has been proven as an effective reperfusion therapy since study inception. METHODS AND ANALYSIS: The Targeting Optimal Thrombolysis Outcomes Study is a multicenter prospective cohort study of ischaemic stroke patients treated at participating Australian Stroke Centres with IVT and/or EVT. Patients undergo neuroimaging using multimodal CT or MRI at baseline with repeat neuroimaging 24 hours post-treatment. Baseline and follow-up blood samples are provided for research use. The primary outcome is good functional outcome at 90 days poststroke, defined as a modified Rankin Scale (mRS) Score of 0-2. Secondary outcomes are reperfusion, recanalisation, infarct core growth, change in stroke severity, poor functional outcome, excellent functional outcome and ordinal mRS at 90 days. Primary predictive models will be developed and validated in patients treated only with rt-PA. Models will be built using regression methods and include clinical variables, radiological measures from multimodal neuroimaging and blood-based biomarkers measured by mass spectrometry. Predictive accuracy will be quantified using c-statistics and R2. In secondary analyses, models will be developed in patients treated using EVT, with or without prior IVT, reflecting practice changes since original study design. ETHICS AND DISSEMINATION: Patients, or relatives when patients could not consent, provide written informed consent to participate. This study received approval from the Hunter New England Local Health District Human Research Ethics Committee (reference 14/10/15/4.02). Findings will be disseminated via peer-reviewed publications and conference presentations.Elizabeth Holliday ... Marten Snel ... Simon Koblar ... Monica Hamilton-Bruce ... Timothy Kleinig ... Paul J Trim ... et al

    Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica.

    Get PDF
    Oomycetes in the class Saprolegniomycetidae of the Eukaryotic kingdom Stramenopila have evolved as severe pathogens of amphibians, crustaceans, fish and insects, resulting in major losses in aquaculture and damage to aquatic ecosystems. We have sequenced the 63 Mb genome of the fresh water fish pathogen, Saprolegnia parasitica. Approximately 1/3 of the assembled genome exhibits loss of heterozygosity, indicating an efficient mechanism for revealing new variation. Comparison of S. parasitica with plant pathogenic oomycetes suggests that during evolution the host cellular environment has driven distinct patterns of gene expansion and loss in the genomes of plant and animal pathogens. S. parasitica possesses one of the largest repertoires of proteases (270) among eukaryotes that are deployed in waves at different points during infection as determined from RNA-Seq data. In contrast, despite being capable of living saprotrophically, parasitism has led to loss of inorganic nitrogen and sulfur assimilation pathways, strikingly similar to losses in obligate plant pathogenic oomycetes and fungi. The large gene families that are hallmarks of plant pathogenic oomycetes such as Phytophthora appear to be lacking in S. parasitica, including those encoding RXLR effectors, Crinkler's, and Necrosis Inducing-Like Proteins (NLP). S. parasitica also has a very large kinome of 543 kinases, 10% of which is induced upon infection. Moreover, S. parasitica encodes several genes typical of animals or animal-pathogens and lacking from other oomycetes, including disintegrins and galactose-binding lectins, whose expression and evolutionary origins implicate horizontal gene transfer in the evolution of animal pathogenesis in S. parasitica

    A predicted functional gene network for the plant pathogen Phytophthora infestans as a framework for genomic biology

    No full text
    Background - Associations between proteins are essential to understand cell biology. While this complex interplay between proteins has been studied in model organisms, it has not yet been described for the oomycete late blight pathogen Phytophthora infestans. Results - We present an integrative probabilistic functional gene network that provides associations for 37 percent of the predicted P. infestans proteome. Our method unifies available genomic, transcriptomic and comparative genomic data into a single comprehensive network using a Bayesian approach. Enrichment of proteins residing in the same or related subcellular localization validates the biological coherence of our predictions. The network serves as a framework to query existing genomic data using network-based methods, which thus far was not possible in Phytophthora. We used the network to study the set of interacting proteins that are encoded by genes co-expressed during sporulation. This identified potential novel roles for proteins in spore formation through their links to proteins known to be involved in this process such as the phosphatase Cdc14. Conclusions - The functional association network represents a novel genome-wide data source for P. infestans that also acts as a framework to interrogate other system-wide data. In both capacities it will improve our understanding of the complex biology of P. infestans and related oomycete pathogen

    Bioinformatic Inference of Specific and General Transcription Factor Binding Sites in the Plant Pathogen Phytophthora infestans

    Get PDF
    Plant infection by oomycete pathogens is a complex process. It requires precise expression of a plethora of genes in the pathogen that contribute to a successful interaction with the host. Whereas much effort has been made to uncover the molecular systems underlying this infection process, mechanisms of transcriptional regulation of the genes involved remain largely unknown. We performed the first systematic de-novo DNA motif discovery analysis in Phytophthora. To this end, we utilized the genome sequence of the late blight pathogen Phytophthora infestans and two related Phytophthora species (P. ramorum and P. sojae), as well as genome-wide in planta gene expression data to systematically predict 19 conserved DNA motifs. This catalog describes common eukaryotic promoter elements whose functionality is supported by the presence of orthologs of known general transcription factors. Together with strong functional enrichment of the common promoter elements towards effector genes involved in pathogenicity, we obtained a new and expanded picture of the promoter structure in P. infestans. More intriguingly, we identified specific DNA motifs that are either highly abundant or whose presence is significantly correlated with gene expression levels during infection. Several of these motifs are observed upstream of genes encoding transporters, RXLR effectors, but also transcriptional regulators. Motifs that are observed upstream of known pathogenicity-related genes are potentially important binding sites for transcription factors. Our analyses add substantial knowledge to the as of yet virtually unexplored question regarding general and specific gene regulation in this important class of pathogens. We propose hypotheses on the effects of cis-regulatory motifs on the gene regulation of pathogenicity-related genes and pinpoint motifs that are prime targets for further experimental validation

    Unravelling Prostate Cancer Heterogeneity Using Spatial Approaches to Lipidomics and Transcriptomics

    Get PDF
    Published: 27 March 2022Due to advances in the detection and management of prostate cancer over the past 20 years, most cases of localised disease are now potentially curable by surgery or radiotherapy, or amenable to active surveillance without treatment. However, this has given rise to a new dilemma for disease management; the inability to distinguish indolent from lethal, aggressive forms of prostate cancer, leading to substantial overtreatment of some patients and delayed intervention for others. Driving this uncertainty is the critical deficit of novel targets for systemic therapy and of validated biomarkers that can inform treatment decision-making and to select and monitor therapy. In part, this lack of progress reflects the inherent challenge of undertaking target and biomarker discovery in clinical prostate tumours, which are cellularly heterogeneous and multifocal, necessitating the use of spatial analytical approaches. In this review, the principles of mass spectrometry-based lipid imaging and complementary gene-based spatial omics technologies, their application to prostate cancer and recent advancements in these technologies are considered. We put in perspective studies that describe spatially-resolved lipid maps and metabolic genes that are associated with prostate tumours compared to benign tissue and increased risk of disease progression, with the aim of evaluating the future implementation of spatial lipidomics and complementary transcriptomics for prognostication, target identification and treatment decision-making for prostate cancer.Shadrack M. Mutuku, Xander Spotbeen, Paul J. Trim, Marten F. Snel, Lisa M. Butler and Johannes V. Swinne
    corecore