6,902 research outputs found
The Moral Economy and Research on Projects: neglect and relevance to social capital and competencies
This paper makes a theoretical contribution to the understanding of management and of projects. The paper adopts an analysis of the moral economy, which poses a conceptual challenge to the way in which management generally, and specifically concerning projects, is understood. The paper also poses an indirect methodological challenge, particularly to positivism, empiricism and some interpretative analysis.Project management and the management of projects have tended to focus upon task and function respectively, which has relegated or excluded the role of morality in relationships in both research and practice. A similar position is adopted in economics with a focus upon closed systems. The combined result is an exclusion of the moral economy. This paper argues for a theoretical reappraisal of management generally, and specifically with regard to projects, to include the moral economy. The moral economy is not only foundational to the operation of the market economy, but also contributes to its performance.The conclusion summaries the main points and makes recommendations concerning theoretical development, methodology and practice
Multiresolution pattern recognition of small volcanos in Magellan data
The Magellan data is a treasure-trove for scientific analysis of venusian geology, providing far more detail than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations. However, at this point, planetary scientists are being overwhelmed by the sheer quantities of data collected--data analysis technology has not kept pace with our ability to collect and store it. In particular, 'small-shield' volcanos (less than 20 km in diameter) are the most abundant visible geologic feature on the planet. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanos visible in the Magellan data. Identifying and studying these volcanos is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is very time-consuming. Hence, we have undertaken the development of techniques to partially automate this task. The goal is not the unrealistic one of total automation, but rather the development of a useful tool to aid the project scientists. The primary constraints for this particular problem are as follows: (1) the method must be reasonably robust; and (2) the method must be reasonably fast. Unlike most geological features, the small volcanos of Venus can be ascribed to a basic process that produces features with a short list of readily defined characteristics differing significantly from other surface features on Venus. For pattern recognition purposes the relevant criteria include the following: (1) a circular planimetric outline; (2) known diameter frequency distribution from preliminary studies; (3) a limited number of basic morphological shapes; and (4) the common occurrence of a single, circular summit pit at the center of the edifice
Stratified shear flow instabilities at large Richardson numbers
Numerical simulations of stratified shear flow instabilities are performed in
two dimensions in the Boussinesq limit. The density variation length scale is
chosen to be four times smaller than the velocity variation length scale so
that Holmboe or Kelvin-Helmholtz unstable modes are present depending on the
choice of the global Richardson number Ri. Three different values of Ri were
examined Ri =0.2, 2, 20. The flows for the three examined values are all
unstable due to different modes namely: the Kelvin-Helmholtz mode for Ri=0.2,
the first Holmboe mode for Ri=2, and the second Holmboe mode for Ri=20 that has
been discovered recently and it is the first time that it is examined in the
non-linear stage. It is found that the amplitude of the velocity perturbation
of the second Holmboe mode at the non-linear stage is smaller but comparable to
first Holmboe mode. The increase of the potential energy however due to the
second Holmboe modes is greater than that of the first mode. The
Kelvin-Helmholtz mode is larger by two orders of magnitude in kinetic energy
than the Holmboe modes and about ten times larger in potential energy than the
Holmboe modes. The results in this paper suggest that although mixing is
suppressed at large Richardson numbers it is not negligible, and turbulent
mixing processes in strongly stratified environments can not be excluded.Comment: Submitted to Physics of Fluid
Antimicrobial susceptibility of invasive isolates of Streptococcus pneumoniae in Ireland
ABSTRACTBetween January 1999 and June 2002, 646 invasive isolates of Streptococcus pneumoniae were collected in Ireland. MICs of penicillin, ciprofloxacin, cefotaxime, moxifloxacin and linezolid were determined by Etest methodology. Eighty-seven (13.5%) isolates showed intermediate resistance to penicillin, while seven (1.1%) showed high-level resistance. Eighty-seven (13.5%) isolates were resistant to erythromycin, but all isolates were susceptible to cefotaxime, moxifloxacin and linezolid. The prevalence of pneumococcal isolates non-susceptible to penicillin in Ireland is worryingly high, but currently there are alternative agents available to treat invasive infection
Recommended from our members
Potential sinks for geologic storage of carbon dioxide generated by power plants in North and South Carolina
Duke Energy
Progress Energy
Santee Cooper Power
SCANA CorporationBureau of Economic Geolog
Small animal disease surveillance: respiratory disease 2017
This report focuses on surveillance for respiratory disease in companion animals. It begins with an analysis of data from 392 veterinary practices contributing to the Small Animal Veterinary Surveillance Network (SAVSNET) between January and December 2017.
The following section describes canine respiratory coronavirus infections in dogs, presenting results from laboratory-confirmed cases across the country between January 2010 and December 2017. This is followed by an update on the temporal trends of three important syndromes in companion animals, namely gastroenteritis, pruritus and respiratory disease, from 2014 to 2017.
A fourth section presents a brief update on Streptococcus equi subspecies zooepidemicus in companion animals. The final section summarises some recent developments pertinent to companion animal health, namely eyeworm (Thelazzia callipaeda) infestations in dogs imported to the UK and canine influenza virus in the USA and Canada
Two-Level Atom in an Optical Parametric Oscillator: Spectra of Transmitted and Fluorescent Fields in the Weak Driving Field Limit
We consider the interaction of a two-level atom inside an optical parametric
oscillator. In the weak driving field limit, we essentially have an atom-cavity
system driven by the occasional pair of correlated photons, or weakly squeezed
light. We find that we may have holes, or dips, in the spectrum of the
fluorescent and transmitted light. This occurs even in the strong-coupling
limit when we find holes in the vacuum-Rabi doublet. Also, spectra with a
sub-natural linewidth may occur. These effects disappear for larger driving
fields, unlike the spectral narrowing obtained in resonance fluorescence in a
squeezed vacuum; here it is important that the squeezing parameter tends to
zero so that the system interacts with only one correlated pair of photons at a
time. We show that a previous explanation for spectral narrowing and spectral
holes for incoherent scattering is not applicable in the present case, and
propose a new explanation. We attribute these anomalous effects to quantum
interference in the two-photon scattering of the system.Comment: 10 pages, 17 figures, submitted to Phys Rev
The nature of iron-oxygen vacancy defect centers in PbTiO3
The iron(III) center in ferroelectric PbTiO3 together with an oxygen vacancy
forms a charged defect associate, oriented along the crystallographic c-axis.
Its microscopic structure has been analyzed in detail comparing results from a
semi-empirical Newman superposition model analysis based on finestructure data
and from calculations using density functional theory.
Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor
center. The position of the iron ion in the ferroelectric phase is found to be
similar to the B-site in the paraelectric phase. Partial charge compensation is
locally provided by a directly coordinated oxygen vacancy.
Using high-resolution synchrotron powder diffraction, it was verified that
lead titanate remains tetragonal down to 12 K, exhibiting a c/a-ratio of
1.0721.Comment: 11 pages, 5 figures, accepted in Phys. Rev.
Recommended from our members
Comparison of free tropospheric western Pacific air mass classification schemes for the PEM-West A experiment
During September/October 1991, NASA's Global Tropospheric Experiment (GTE) conducted an airborne field measurement program (PEM-West A) in the troposphere over the western Pacific Ocean. In this paper we describe and use the relative abundance of the combustion products C2H2 and CO to classify air masses encountered during PEM-West A based on the degree that these tracers were processed by the combined effects of photochemical reactions and dynamical mixing (termed the degree of atmospheric processing). A large number of trace compounds (e.g., C2H6, C3H8, C6H6, NOy, and O3) are found to be well correlated with the degree of atmospheric processing that is reflected by changes in the ratio of C2H2/CO over the range of values from âŒ0.3 to 2.0 (parts per trillion volume) C2H2/ (parts per billion volume) CO. This C2H2/CO-based classification scheme is compared to model simulations and to two independent classification schemes based on air mass back-trajectory analyses and lidar profiles of O3 and aerosols. In general, these schemes agree well, and in combination they suggest that the functional dependence that other observed species exhibit with respect to the C2H2/CO atmospheric processing scale can be used to study the origin, sources, and sinks of trace species and to derive several important findings. First, the degree of atmospheric processing is found to be dominated by dilution associated with atmospheric mixing, which is found to primarily occur through the vertical mixing of relatively recent emissions of surface layer trace species. Photochemical reactions play their major role by influencing the background concentrations of trace species that are entrained during the mixing (i.e., dilution) process. Second, a significant noncontinental source(s) of NO (and NOx) in the free troposphere is evident. In particular, the enhanced NO mixing ratios that were observed in convected air masses are attributed to either emissions from lightning or the rapid recycling of NOy compounds. Third, nonsoluble trace species emitted in the continental boundary layer, such as CO and hydrocarbons, are vertically transported to the upper troposphere as efficiently as they are to the midtroposphere. In addition, the mixing ratios of CO and hydrocarbons in the upper troposphere over the western Pacific may reflect a significant contribution from northern hemisphere land areas other than Asia. Finally, we believe that these results can be valuable for the quantitative evaluation of the vertical transport processes that are usually parameterized in models. Copyright 1996 by the American Geophysical Union
- âŠ