526 research outputs found
Lower Bounds for Heights in Relative Galois Extensions
The goal of this paper is to obtain lower bounds on the height of an
algebraic number in a relative setting, extending previous work of Amoroso and
Masser. Specifically, in our first theorem we obtain an effective bound for the
height of an algebraic number when the base field is a
number field and is Galois. Our second result
establishes an explicit height bound for any non-zero element which is
not a root of unity in a Galois extension , depending on
the degree of and the number of conjugates of
which are multiplicatively independent over . As a consequence, we
obtain a height bound for such that is independent of the
multiplicative independence condition
Free energy and configurational entropy of liquid silica: fragile-to-strong crossover and polyamorphism
Recent molecular dynamics (MD) simulations of liquid silica, using the
``BKS'' model [Van Beest, Kramer and van Santen, Phys. Rev. Lett. {\bf 64},
1955 (1990)], have demonstrated that the liquid undergoes a dynamical crossover
from super-Arrhenius, or ``fragile'' behavior, to Arrhenius, or ``strong''
behavior, as temperature is decreased. From extensive MD simulations, we
show that this fragile-to-strong crossover (FSC) can be connected to changes in
the properties of the potential energy landscape, or surface (PES), of the
liquid. To achieve this, we use thermodynamic integration to evaluate the
absolute free energy of the liquid over a wide range of density and . We use
this free energy data, along with the concept of ``inherent structures'' of the
PES, to evaluate the absolute configurational entropy of the liquid. We
find that the temperature dependence of the diffusion coefficient and of
are consistent with the prediction of Adam and Gibbs, including in the region
where we observe the FSC to occur. We find that the FSC is related to a change
in the properties of the PES explored by the liquid, specifically an inflection
in the dependence of the average inherent structure energy. In addition, we
find that the high behavior of suggests that the liquid entropy might
approach zero at finite , behavior associated with the so-called Kauzmann
paradox. However, we find that the change in the PES that underlies the FSC is
associated with a change in the dependence of that elucidates how the
Kauzmann paradox is avoided in this system. Finally, we also explore the
relation of the observed PES changes to the recently discussed possibility that
BKS silica exhibits a liquid-liquid phase transition, a behavior that has been
proposed to underlie the observed polyamorphism of amorphous solid silica.Comment: 14 pages, 18 figure
Anti-DLL4 VNAR targeted nanoparticles for targeting of both tumour and tumour associated vasculature
Acknowledgements The authors acknowledge the Engineering and Physical Sciences Research Council (EPSRC) (S3802ASA) and the generous support of the Martin Family Foundation for funding the Ph.D. studentships of P. S. and A. L., respectively. This work was also partially funded through a US-Ireland R&D Partnership grant awarded by HSCNI (STL/5010/14), Medical Research Council UK (MC_PC_15013), and the Biotechnology and Biological Sciences Research Council (BBSRC) (BB/R009112/1).Peer reviewedPublisher PD
Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study
Peer reviewedPublisher PD
Lake-size dependency of wind shear and convection as controls on gas exchange
High-frequency physical observations from 40 temperate lakes were used to examine the relative contributions of wind shear (u*) and convection (w*) to turbulence in the surface mixed layer. Seasonal patterns of u* and w* were dissimilar; u* was often highest in the spring, while w * increased throughout the summer to a maximum in early fall. Convection was a larger mixed-layer turbulence source than wind shear (u */w*-1 for lakes* and w* differ in temporal pattern and magnitude across lakes, both convection and wind shear should be considered in future formulations of lake-air gas exchange, especially for small lakes. © 2012 by the American Geophysical Union.Jordan S. Read, David P. Hamilton, Ankur R. Desai, Kevin C. Rose, Sally MacIntyre, John D. Lenters, Robyn L. Smyth, Paul C. Hanson, Jonathan J. Cole, Peter A. Staehr, James A. Rusak, Donald C. Pierson, Justin D. Brookes, Alo Laas, and Chin H. W
Fluorescence characterization of clinically-important bacteria
Healthcare-associated infections (HCAI/HAI) represent a substantial threat to patient health during hospitalization and incur billions of dollars additional cost for subsequent treatment. One promising method for the detection of bacterial contamination in a clinical setting before an HAI outbreak occurs is to exploit native fluorescence of cellular molecules for a hand-held, rapid-sweep surveillance instrument. Previous studies have shown fluorescence-based detection to be sensitive and effective for food-borne and environmental microorganisms, and even to be able to distinguish between cell types, but this powerful technique has not yet been deployed on the macroscale for the primary surveillance of contamination in healthcare facilities to prevent HAI. Here we report experimental data for the specification and design of such a fluorescence-based detection instrument. We have characterized the complete fluorescence response of eleven clinically-relevant bacteria by generating excitation-emission matrices (EEMs) over broad wavelength ranges. Furthermore, a number of surfaces and items of equipment commonly present on a ward, and potentially responsible for pathogen transfer, have been analyzed for potential issues of background fluorescence masking the signal from contaminant bacteria. These include bedside handrails, nurse call button, blood pressure cuff and ward computer keyboard, as well as disinfectant cleaning products and microfiber cloth. All examined bacterial strains exhibited a distinctive double-peak fluorescence feature associated with tryptophan with no other cellular fluorophore detected. Thus, this fluorescence survey found that an emission peak of 340nm, from an excitation source at 280nm, was the cellular fluorescence signal to target for detection of bacterial contamination. The majority of materials analysed offer a spectral window through which bacterial contamination could indeed be detected. A few instances were found of potential problems of background fluorescence masking that of bacteria, but in the case of the microfiber cleaning cloth, imaging techniques could morphologically distinguish between stray strands and bacterial contamination
Lymphocyte subsets and the role of Th1/Th2 balance in stressed chronic pain patients
Background: The complex regional pain syndrome (CRPS) and fibromyalgia (FM) are chronic pain syndromes occurring in highly stressed individuals. Despite the known connection between the nervous system and immune cells, information on distribution of lymphocyte subsets under stress and pain conditions is limited. Methods: We performed a comparative study in 15 patients with CRPS type I, 22 patients with FM and 37 age- and sex-matched healthy controls and investigated the influence of pain and stress on lymphocyte number, subpopulations and the Th1/Th2 cytokine ratio in T lymphocytes. Results: Lymphocyte numbers did not differ between groups. Quantitative analyses of lymphocyte subpopulations showed a significant reduction of cytotoxic CD8+ lymphocytes in both CRPS (p < 0.01) and FM (p < 0.05) patients as compared with healthy controls. Additionally, CRPS patients were characterized by a lower percentage of IL-2-producing T cell subpopulations reflecting a diminished Th1 response in contrast to no changes in the Th2 cytokine profile. Conclusions: Future studies are warranted to answer whether such immunological changes play a pathogenetic role in CRPS and FM or merely reflect the consequences of a pain-induced neurohumoral stress response, and whether they contribute to immunosuppression in stressed chronic pain patients. Copyright (c) 2008 S. Karger AG, Basel
Multihospital Outbreak of Clostridium difficile Ribotype 027 Infection: Epidemiology and Analysis of Control Measures
Objective. To report a large outbreak of Clostridium difficile infection (CDI; ribotype 027) between June 2007 and August 2008, describe infection control measures, and evaluate the impact of restricting the use of fluoroquinolones in controlling the outbreak. Design. Outbreak investigation in 3 acute care hospitals of the Northern Health and Social Care Trust in Northern Ireland. Interventions. Implementation of a series of CDI control measures that targeted high-risk antibiotic agents (ie, restriction of fluoroquinolones), infection control practices, and environmental hygiene. Results. A total of 318 cases of CDI were identified during the outbreak, which was the result of the interaction between C. difficile ribotype 027 being introduced into the affected hospitals for the first time and other predisposing risk factors (ranging from host factors to suboptimal compliance with antibiotic guidelines and infection control policies). The 30-day all-cause mortality rate was 24.5%; however, CDI was the attributable cause of death for only 2.5% of the infected patients. Time series analysis showed that restricting the use of fluoroquinolones was associated with a significant reduction in the incidence of CDI (coefficient, —0.054; lag time, 4 months; P = .003). Conclusion. These findings provide additional evidence to support the value of antimicrobial stewardship as an essential element of multifaceted interventions to control CDI outbreaks. The present CDI outbreak was ended following the implementation of an action plan improving communication, antibiotic stewardship, infection control practices, environmental hygiene, and surveillanc
The impact of donor and recipient common clinical and genetic variation on estimated glomerular filtration rate in a European renal transplant population
Genetic variation across the HLA is known to influence renal‐transplant outcome. However, the impact of genetic variation beyond the HLA is less clear. We tested the association of common genetic variation and clinical characteristics, from both the donor and recipient, with post‐transplant eGFR at different time‐points, out to 5‐years post‐transplantation.
We conducted GWAS meta‐analyses across 10,844 donors and recipients from five European ancestry cohorts. We also analysed the impact of polygenic risk scores (PRS), calculated using genetic variants associated with non‐transplant eGFR, on post‐transplant eGFR.
PRS calculated using the recipient genotype alone, as well as combined donor and recipient genotypes were significantly associated with eGFR at 1‐year post‐transplant. 32% of the variability in eGFR at 1‐year post‐transplant was explained by our model containing clinical covariates (including weights for death/graft‐failure), principal components and combined donor‐recipient PRS, with 0.3% contributed by the PRS. No individual genetic variant was significantly associated with eGFR post‐transplant in the GWAS.
This is the first study to examine PRS, composed of variants that impact kidney function in the general population, in a post‐transplant context. Despite PRS being a significant predictor of eGFR post‐transplant, the effect size of common genetic factors is limited compared to clinical variables
Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.
Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies
- …