135 research outputs found

    The common European asylum system and the rights of the child: an exploration of meaning and compliance

    Get PDF
    This thesis addresses the question of whether the EU Common European Asylum System (CEAS) complies with the rights of the child. A significant proportion of people seeking asylum in EU countries are children. These children may be totally alone, with people who are not their customary caregivers or with members of their immediate family. In recognition of this phenomenon, the instruments that make up the CEAS often make specific provision for children, demonstrating an awareness on the part of the EU legislator of the existence and special needs of asylum-seeking children. However, the question arises as to whether these provisions and the instruments as a whole comply with the rights of the child. This question is particularly pertinent at the moment because respecting and promoting the rights of the child is a new legal and policy imperative of the EU and, furthermore, the CEAS is moving from its first to its second phase - a process that involves recasting most of the instruments. This book identifies key rights of the child that are relevant to the asylum context and explores the meaning of those rights as a matter of international and regional human rights law. It contrasts the normative requirements of those rights with the treatment of children in the CEAS, Phase One and proposed Phase Two.De bescherming van fundamentele rechten in een integrerend Europ

    Effect of luteinizing hormone on follicle stimulating hormone-activated paracrine signalling in rat ovary

    Get PDF
    ‘Pure' follicle stimulating hormone (FSH) and luteinizing hormone (LH) are expected shortly to become available for pharmaceutical use in the clinical setting. To test the contribution of LH to optimal ovarian responsiveness to FSH, 21-day-old hypophysectomized, immature, female rats received four s.c. injections of recombinant human LH (rhLH; total dose 1-10 IU) and/or rhFSH (total dose 30-72 IU) given at 12-hourly intervals. At 48 h after the first injection, ovaries were removed, weighed and used to isolate granulosa and thecal/interstitial cells for assessment of basal and gonadotrophin-responsive steroidogenesis in vitro, or homogenized to extract total RNA for Northern analysis of 17-hydroxylase/C17-20-lyase (cytochrome P-450c17α) mRNA. Serum oestradiol and uterine weight were measured as indices of ovarian oestrogen production; and-rostenedione was measured to reflect ovarian androgen production. Consistent with the two-cell, two-gonadotrophin model of oestrogen synthesis, increased ovarian oestrogen secretion only occurred if both rhFSH and rhLH were given simultaneously. Treatment with rhFSH alone stimulated ovarian weight gain and granulosa cell aromatase activity without oestrogen secretion, whereas rhLH alone stimulated thecal androgen synthesis and androgen secretion. When the total rhLH dose was fixed at 1 IU, giving rise to an unmeasurably low serum concentration of rhLH, additional treatment with rhFSH (30-72 IU) dose-dependently stimulated serum androgen concentrations as well as oestrogen concentrations. The ∼2.0 kb-sized P-450c17α mRNA transcript was undetectable in the ovaries of untreated control animals but was abundant in the ovaries of positive controls treated with 15 IU of pregnant mare serum gonadotrophin. Treatment with 1 IU of rhLH alone barely induced a P-450c17α mRNA signal and treatment with 30 IU of rhFSH alone was completely ineffective. However, combined treatment with 1 IU of rhLH and 30 IU of rhFSH markedly enhanced the P-450c17α mRNA signal to a level approaching the positive-control. Since P-450c17α mRNA is expressed exclusively in thecal cells, which do not possess FSH receptors, we conclude that (i) rhFSH upregulates thecal P-450c17α mRNA and hence follicular androgen synthesis via granulosa-on-theca paracrine signalling, and (ii) tonic stimulation by rhLH is required to facilitate thecal responsiveness to this rhFSH-activated paracrine signal(s

    Development and potential role of type-2 sodium-glucose transporter inhibitors for management of type 2 diabetes

    Get PDF
    There is a recognized need for new treatment options for type 2 diabetes mellitus (T2DM). Recovery of glucose from the glomerular filtrate represents an important mechanism in maintaining glucose homeostasis and represents a novel target for the management of T2DM. Recovery of glucose from the glomerular filtrate is executed principally by the type 2 sodium-glucose cotransporter (SGLT2). Inhibition of SGLT2 promotes glucose excretion and normalizes glycemia in animal models. First reports of specifically designed SGLT2 inhibitors began to appear in the second half of the 1990s. Several candidate SGLT2 inhibitors are currently under development, with four in the later stages of clinical testing. The safety profile of SGLT2 inhibitors is expected to be good, as their target is a highly specific membrane transporter expressed almost exclusively within the renal tubules. One safety concern is that of glycosuria, which could predispose patients to increased urinary tract infections. So far the reported safety profile of SGLT2 inhibitors in clinical studies appears to confirm that the class is well tolerated. Where SGLT2 inhibitors will fit in the current cascade of treatments for T2DM has yet to be established. The expected favorable safety profile and insulin-independent mechanism of action appear to support their use in combination with other antidiabetic drugs. Promotion of glucose excretion introduces the opportunity to clear calories (80–90 g [300–400 calories] of glucose per day) in patients that are generally overweight, and is expected to work synergistically with weight reduction programs. Experience will most likely lead to better understanding of which patients are likely to respond best to SGLT2 inhibitors, and under what circumstances

    A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk

    Get PDF
    Combined analyses of gene networks and DNA sequence variation can provide new insights into the aetiology of common diseases that may not be apparent from genome-wide association studies alone. Recent advances in rat genomics are facilitating systems-genetics approaches. Here we report the use of integrated genome-wide approaches across seven rat tissues to identify gene networks and the loci underlying their regulation. We defined an interferon regulatory factor 7 (IRF7)-driven inflammatory network (IDIN) enriched for viral response genes, which represents a molecular biomarker for macrophages and which was regulated in multiple tissues by a locus on rat chromosome 15q25. We show that Epstein-Barr virus induced gene 2 (Ebi2, also known as Gpr183), which lies at this locus and controls B lymphocyte migration, is expressed in macrophages and regulates the IDIN. The human orthologous locus on chromosome 13q32 controlled the human equivalent of the IDIN, which was conserved in monocytes. IDIN genes were more likely to associate with susceptibility to type 1 diabetes (T1D)-a macrophage-associated autoimmune disease-than randomly selected immune response genes (P = 8.85 x 10(-6)). The human locus controlling the IDIN was associated with the risk of T1D at single nucleotide polymorphism rs9585056 (P = 7.0 x 10(-10); odds ratio, 1.15), which was one of five single nucleotide polymorphisms in this region associated with EBI2 (GPR183) expression. These data implicate IRF7 network genes and their regulatory locus in the pathogenesis of T1D

    Uma visão sobre qualidade do solo

    Full text link

    Traditional and transgenic strategies for controlling tomato-infecting begomoviruses

    Full text link
    corecore