671 research outputs found

    Measuring working memory load effects on electrophysiological markers of attention orienting during a simulated drive

    Get PDF
    Intersection accidents result in a significant proportion of road fatalities, and attention allocation likely plays a role. Attention allocation may depend on (limited) working memory (WM) capacity. Driving is often combined with tasks increasing WM load, consequently impairing attention orienting. This study (n = 22) investigated WM load effects on event-related potentials (ERPs) related to attention orienting. A simulated driving environment allowed continuous lane-keeping measurement. Participants were asked to orient attention covertly towards the side indicated by an arrow, and to respond only to moving cars appearing on the attended side by pressing a button. WM load was manipulated using a concurrent memory task. ERPs showed typical attentional modulation (cue: contralateral negativity, LDAP; car: N1, P1, SN and P3) under low and high load conditions. With increased WM load, lane-keeping performance improved, while dual task performance degraded (memory task: increased error rate; orienting task: increased false alarms, smaller P3). Practitioner Summary: Intersection driver-support systems aim to improve traffic safety and flow. However, in-vehicle systems induce WM load, increasing the tendency to yield. Traffic flow reduces if drivers stop at inappropriate times, reducing the effectiveness of systems. Consequently, driver-support systems could include WM load measurement during driving in the development phase

    Estimated individual lifetime benefit from PCSK9 inhibition in statin-treated patients with coronary artery disease

    No full text
    OBJECTIVE: In statin-treated patients with stable coronary artery disease (CAD), residual risk of cardiovascular events is partly explained by plasma levels of low-density lipoprotein cholesterol (LDL-C). This study aimed to estimate individual benefit of proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition in CAD patients already treated with high-dose statin. METHODS: Individual lifetime benefit was estimated in months gain free of stroke or myocardial infarction (MI) until age 80 years. Predictions were based on two competing risk models developed in data from 4853 patients with CAD originating from the atorvastatin 80 mg arm of the Treating to New Targets (TNT) trial. The relative effect of PCSK9 inhibition was added to the models and was assumed based on average estimates from large clinical trials. We accounted for individual LDL-C levels, assuming 50% LDL-C reduction by PCSK9 inhibition and 21% cardiovascular risk reduction per mmol/L (39 mg/dL) LDL-C lowering. RESULTS: Estimated individual gain was 1.8 mmol/L (>70 mg/dL). Estimated benefit was lowest (≤5 months) in older patients (≥70 years), in particular if LDL-C and other risk factors levels were low. CONCLUSION: The individual estimated lifetime benefit from PCSK9 inhibition in patients with stable CAD on high-dose statin varied from <6 to ≥12 months free of stroke or MI. Highest benefit is expected in younger patients (age 40-60 years) with high risk factor burden and relatively high LDL-C levels. TRIAL REGISTRATION NUMBER: NCT00327691; Post-results

    No Effect of Folic Acid Supplementation on Global DNA Methylation in Men and Women with Moderately Elevated Homocysteine

    Get PDF
    A global loss of cytosine methylation in DNA has been implicated in a wide range of diseases. There is growing evidence that modifications in DNA methylation can be brought about by altering the intake of methyl donors such as folate. We examined whether long-term daily supplementation with 0.8 mg of folic acid would increase global DNA methylation compared with placebo in individuals with elevated plasma homocysteine. We also investigated if these effects were modified by MTHFR C677T genotype. Two hundred sixteen participants out of 818 subjects who had participated in a randomized double-blind placebo-controlled trial were selected, pre-stratified on MTHFR C677T genotype and matched on age and smoking status. They were allocated to receive either folic acid (0.8 mg/d; n = 105) or placebo treatment (n = 111) for three years. Peripheral blood leukocyte DNA methylation and serum and erythrocyte folate were assessed. Global DNA methylation was measured using liquid chromatography-tandem mass spectrometry and expressed as a percentage of 5-methylcytosines versus the total number of cytosine. There was no difference in global DNA methylation between those randomized to folic acid and those in the placebo group (difference = 0.008, 95%CI = −0.05,0.07, P = 0.79). There was also no difference between treatment groups when we stratified for MTHFR C677T genotype (CC, n = 76; CT, n = 70; TT, n = 70), baseline erythrocyte folate status or baseline DNA methylation levels. In moderately hyperhomocysteinemic men and women, long-term folic acid supplementation does not increase global DNA methylation in peripheral blood leukocytes

    Theoretical models of nonlinear effects in two-component cooperative supramolecular copolymerizations

    Get PDF
    The understanding of multi-component mixtures of self-assembling molecules under thermodynamic equilibrium can only be advanced by a combined experimental and theoretical approach. In such systems, small differences in association energy between the various components can be significantly amplified at the supramolecular level via intricate nonlinear effects. Here we report a theoretical investigation of two-component, self-assembling systems in order to rationalize chiral amplification in cooperative supramolecular copolymerizations. Unlike previous models based on theories developed for covalent polymers, the models presented here take into account the equilibrium between the monomer pool and supramolecular polymers, and the cooperative growth of the latter. Using two distinct methodologies, that is, solving mass-balance equations and stochastic simulation, we show that monomer exchange accounts for numerous unexplained observations in chiral amplification in supramolecular copolymerization. In analogy with asymmetric catalysis, amplification of chirality in supramolecular polymers results in an asymmetric depletion of the enantiomerically related monomer pool

    New insights into domestication of carrot from root transcriptome analyses

    Get PDF
    Background - Understanding the molecular basis of domestication can provide insights into the processes of rapid evolution and crop improvement. Here we demonstrated the processes of carrot domestication and identified genes under selection based on transcriptome analyses. Results - The root transcriptomes of widely differing cultivated and wild carrots were sequenced. A method accounting for sequencing errors was introduced to optimize SNP (single nucleotide polymorphism) discovery. 11,369 SNPs were identified. Of these, 622 (out of 1000 tested SNPs) were validated and used to genotype a large set of cultivated carrot, wild carrot and other wild Daucus carota subspecies, primarily of European origin. Phylogenetic analysis indicated that eastern carrot may originate from Western Asia and western carrot may be selected from eastern carrot. Different wild D. carota subspecies may have contributed to the domestication of cultivated carrot. Genetic diversity was significantly reduced in western cultivars, probably through bottlenecks and selection. However, a high proportion of genetic diversity (more than 85% of the genetic diversity in wild populations) is currently retained in western cultivars. Model simulation indicated high and asymmetric gene flow from wild to cultivated carrots, spontaneously and/or by introgression breeding. Nevertheless, high genetic differentiation exists between cultivated and wild carrots (Fst =0.295) showing the strong effects of selection. Expression patterns differed radically for some genes between cultivated and wild carrot roots which may be related to changes in root traits. The up-regulation of water-channel-protein gene expression in cultivars might be involved in changing water content and transport in roots. The activated expression of carotenoid-binding-protein genes in cultivars could be related to the high carotenoid accumulation in roots. The silencing of allergen-protein-like genes in cultivated carrot roots suggested strong human selection to reduce allergy. These results suggest that regulatory changes of gene expressions may have played a predominant role in domestication. Conclusions - Western carrots may originate from eastern carrots. The reduction in genetic diversity in western cultivars due to domestication bottleneck/selection may have been offset by introgression from wild carrot. Differential gene expression patterns between cultivated and wild carrot roots may be a signature of strong selection for favorable cultivation traits
    corecore