6 research outputs found

    Enhancing Biodiversity and Multifunctionality of an Organic Farmscape in California’s Central Valley

    Get PDF
    Organic farmers in the USA increasingly manage the margins of previously monocultured farmed landscapes to increase biodiversity, e.g. they restore and protect riparian corridors, plant hedgerows and construct vegetated tailwater ponds. This study attempts to link habitat enhancements, biodiversity and changes in ecosystem functions by: 1. inventorying the existing biodiversity and the associated belowground community structure and composition in the various habitats of an organic farm in California’s Central Valley; and 2. monitoring key ecosystem functions of these habitats. Two years of inventories show greater native plant diversity in non-cropped areas. While nematode diversity did not differ between habitats, functional groups were clearly associated with particular habitats as were soil microbial communities (phospholipid fatty acid analysis). Earthworm diversity did not differ between habitats, but biomass was higher in non-cropped areas. Habitats with woody vegetation stored 20% of the farmscape’s total carbon (C), despite their relatively small size (only 5% of the total farm). Two years of monitoring data of farmscape C and nitrogen (N) through emissions, run-off and leaching showed distinct tradeoffs in function associated with each habitat. Clearly habitat restoration in field margins will increase both landscape biodiversity and the multifunctionality of the farmscape as a whole

    Social-ecological and regional adaption of agrobiodiversity management across a global set of research regions

    No full text
    To examine management options for biodiversity in agricultural landscapes, eight research regions were classified into social-ecological domains, using a dataset of indicators of livelihood resources, i.e., capital assets. Potential interventions for biodiversity-based agriculture were then compared among landscapes and domains. The approach combined literature review with expert judgment by researchers working in each landscape. Each landscape was described for land use, rural livelihoods and attitudes of social actors toward biodiversity and intensification of agriculture. Principal components analysis of 40 indicators of natural, human, social, financial and physical capital for the eight landscapes showed a loss of biodiversity associated with high-input agricultural intensification. High levels of natural capital (e.g. indicators of wildland biodiversity conservation and agrobiodiversity for human needs) were positively associated with indicators of human capital, including knowledge of the flora and fauna and knowledge sharing among farmers. Three social-ecological domains were identified across the eight landscapes (Tropical Agriculture-Forest Matrix, Tropical Degrading Agroecosystem, and Temperate High-Input Commodity Agriculture) using hierarchical clustering of the indicator values. Each domain shared a set of interventions for biodiversity-based agriculture and ecological intensification that could also increase food security in the impoverished landscapes. Implementation of interventions differed greatly among the landscapes, e.g. financial capital for new farming practices in the Intensive Agriculture domain vs. developing market value chains in the other domains. This exploratory study suggests that indicators of knowledge systems should receive greater emphasis in the monitoring of biodiversity and ecosystem services, and that inventories of assets at the landscape level can inform adaptive management of agrobiodiversity-based intervention
    corecore