69 research outputs found

    Experimental observation of the trapped rainbow

    Get PDF
    We report on the first experimental demonstration of the broadband "trapped rainbow" in the visible frequency range using an adiabatically tapered waveguide. Being a distinct case of the slow light phenomenon, the trapped rainbow effect could be applied to optical computing and signal processing, and to providing enhanced light-matter interactions.Comment: 2 pages, 1 figur

    Gapped tunneling spectra in the normal state of Pr2x_{2-x}Cex_xCuO4_4

    Full text link
    We present tunneling data in the normal state of the electron doped cuprate superconductor Pr2x_{2-x}Cex_xCuO4_4 for three different values of the doping xx. The normal state is obtained by applying a magnetic field greater than the upper critical field, Hc2H_{c2} for T<TcT < T_c. We observe an anomalous normal state gap near the Fermi level. From our analysis of the tunneling data we conclude that this is a feature of the normal state density of states. We discuss possible reasons for the formation of this gap and its implications for the nature of the charge carriers in the normal and the superconducting states of cuprate superconductors.Comment: 7 pages ReVTeX, 11 figures files included, submitted to PR

    Properties of the ferrimagnetic double-perovskite A_{2}FeReO_{6} (A=Ba and Ca)

    Get PDF
    Ceramics of A_{2}FeReO_{6} double-perovskite have been prepared and studied for A=Ba and Ca. Ba_{2}FeReO_{6} has a cubic structure (Fm3m) with aa\approx 8.0854(1) \AA whereas Ca_{2}FeReO_{6} has a distorted monoclinic symmetry with a5.396(1)A˚,b5.522(1)A˚,c7.688(2)A˚a\approx 5.396(1) \AA, b\approx 5.522(1) \AA, c\approx 7.688(2) \AA and β=90.4(P21/n)\beta =90.4^{\circ} (P21/n). The barium compound is metallic from 5 K to 385 K, i.e. no metal-insulator transition has been seen up to 385 K, and the calcium compound is semiconducting from 5 K to 385 K. Magnetization measurements show a ferrimagnetic behavior for both materials, with T_{c}=315 K for Ba_{2}FeReO_{6} and above 385 K for Ca_{2}FeReO_{6}. A specific heat measurement on the barium compound gave an electron density of states at the Fermi level, N(E_{F}) equal to 6.1×1024eV1mole1\times 10^{24} eV^{-1}mole^{-1}. At 5 K, we observed a negative magnetoresistance of 10 % in a magnetic field of 5 T, but only for Ba_{2}FeReO_{6}. Electrical, thermal and magnetic properties are discussed and compared to the analogous compounds Sr_{2}Fe(Mo,Re)O_{6}.Comment: 5 pages REVTeX, 7 figures included, submitted to PR

    Magnetic light

    Full text link
    In this paper we report on the observation of novel and highly unusual magnetic state of light. It appears that in small holes light quanta behave as small magnets so that light propagation through such holes may be affected by magnetic field. When arrays of such holes are made, magnetic light of the individual holes forms novel and highly unusual two-dimensional magnetic light material. Magnetic light may soon become a great new tool for quantum communication and computing.Comment: Submitted to Phys.Rev.Lett., 3 figure

    Temperature and field dependence of the phase separation, structure, and magnetic ordering in La1x_{1-x}Cax_xMnO3_3, (x=0.47x=0.47, 0.50, and 0.53)

    Full text link
    Neutron powder diffraction measurements, combined with magnetization and resistivity data, have been carried out in the doped perovskite La1x_{1-x}Cax_xMnO3_3 (x=0.47x=0.47, 0.50, and 0.53) to elucidate the structural, magnetic, and electronic properties of the system around the composition corresponding to an equal number of Mn3+ and Mn4+. At room temperature all three samples are paramagnetic and single phase, with crystallographic symmetry Pnma. The samples then all become ferromagnetic (FM) at TC265T_C\approx 265 K. At 230\sim 230 K, however, a second distinct crystallographic phase (denoted A-II) begins to form. Initially the intrinsic widths of the peaks are quite large, but they narrow as the temperature decreases and the phase fraction increases, indicating microscopic coexistence. The fraction of the sample that exhibits the A-II phase increases with decreasing temperature and also increases with increasing Ca doping, but the transition never goes to completion to the lowest temperatures measured (5 K) and the two phases therefore coexist in this temperature-composition regime. Phase A-II orders antiferromagnetically (AFM) below a N\'{e}el temperature TN160T_N \approx 160 K, with the CE-type magnetic structure. Resistivity measurements show that this phase is a conductor, while the CE phase is insulating. Application of magnetic fields up to 9 T progressively inhibits the formation of the A-II phase, but this suppression is path dependent, being much stronger for example if the sample is field-cooled compared to zero-field cooling and then applying the field. The H-T phase diagram obtained from the diffraction measurements is in good agreement with the results of magnetization and resistivity.Comment: 12 pages, 3 tables, 11 figure

    Specific heat study of single crystalline Pr0.63_{0.63} Ca0.37_{0.37} MnO3_{3} in presence of a magnetic field

    Get PDF
    We present the results of a study of specific heat on a single crystal of Pr0.63_{0.63}Ca0.37_{0.37}MnO3_3 performed over a temperature range 3K-300K in presence of 0 and 8T magnetic fields. An estimate of the entropy and latent heat in a magnetic field at the first order charge ordering (CO) transition is presented. The total entropy change at the CO transition which is \approx 1.8 J/mol K at 0T, decreases to \sim 1.5 J/mol K in presence of 8T magnetic field. Our measurements enable us to estimate the latent heat LCOL_{CO} \approx 235 J/mol involved in the CO transition. Since the entropy of the ferromagnetic metallic (FMM) state is comparable to that of the charge-ordered insulating (COI) state, a subtle change in entropy stabilises either of these two states. Our low temperature specific heat measurements reveal that the linear term is absent in 0T and surprisingly not seen even in the metallic FMM state.Comment: 8 pages (in RevTEX format), 12 figures (in postscript format) Submitted to Phys. Rev.

    Specific heat and magnetic measurements in Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3 samples

    Full text link
    We studied the magnetization as a function of temperature and magnetic field in the compounds Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3. It allowed us to identify the ferromagnetic, antiferromagnetic and charge ordering phases in each case. The intrinsic magnetic moments of Nd3+ and Ho3+ ions experienced a short range order at low temperatures. We also did specific heat measurements with applied magnetic fields between 0 and 9 T and temperatures between 2 and 300 K in all three samples. Close to the charge ordering and ferromagnetic transition temperatures the specific heat curves showed peaks superposed to the characteristic response of the lattice oscillations. Below 10 K the specific heat measurements evidenced a Schottky-like anomaly for all samples. However, we could not successfully fit the curves to either a two level nor a distribution of two-level Schottky anomaly. Our results indicated that the peak temperature of the Schottky anomaly was higher in the compounds with narrower conduction band.Comment: submitted to PR
    corecore