66 research outputs found

    The central European floods of August 2002: Part 1 - Rainfall periods and flood development

    Get PDF
    Record-breaking rainfall amounts and intensities were observed at several raingauges in central Europe during the first half of August 2002 (Fig. 1). They produced flash floods in small rivers in the Erz Mountains, the Bohemian Forest and in Lower Austria (see Fig. 2), followed by record-breaking floods of larger rivers fed from these areas. The Vltava submerged parts of the city of Prague on 13± 15 August, and subsequently the Elbe flooded parts of Dresden and further villages and towns located downstream. The gauge level of 9.40m measured at Dresden on 17 August 2002 is the highest level since 1275, exceeding the former maximum level of 8.77m recorded in 1845 (Grollmann and Simon 2002). Parts of the Danube catchment were also affected by severe flooding. There were 100 fatalities connected with the floods in central Europe, and the economic loss is estimated at 9 billion Euros for Germany (German government’s estimate), 3 billion Euros for Austria, and 2.5 billion Euros for the Czech Republic (estimates from Boyle 2002). The event thus replaced the European winter storm Lothar of December 1999 (Ulbrich et al. 2001) as the most expensive weather-related catastrophe in Europe in recent decades (see Cornford 2002). In this study, we give an overview of the exceptional rainfall experienced over wide areas on 12/13 August 2002, and the resulting floods. Further events during early August 2002, in particular the event on 6/7 August in Lower Austria, are briefly mentioned

    Strong sediments at the deformation front, and weak sediments at the rear of the Nankai accretionary prism, revealed by triaxial deformation experiments

    Get PDF
    Nineteen whole-round core samples from the Nankai accretionary prism (IODP Expeditions 315, 316, and 333) from a depth range of 28–128 m below sea floor were experimentally deformed in a triaxial cell under consolidated and undrained conditions at confining pressures of 400–1000 kPa, room temperature, axial displacement rates of 0.01–9.0 mm/min, and up to axially compressive strains of ∌64%. Despite great similarities in composition and grain size distribution of the silty clay samples, two distinct “rheological groups” are distinguished: The first group shows deviatoric peak stress after only a few percent of compressional strain (10%), or does not weaken at all. This is characteristic of structurally strong material. The strong samples tend to be overconsolidated and are all from the drillsites at the accretionary prism toe, while the weak and normally consolidated samples come from the immediate hanging wall of a megasplay fault further upslope. Sediments from the incoming plate are also structurally weak. The observed differences in mechanical behavior may hold a key for understanding strain localization and brittle faulting within the uniform silty and clayey sedimentary sequence of the Nankai accretionary prism

    Nach ,,Schrems II‘‘: Europa braucht digitale EigenstĂ€ndigkeit

    No full text

    60 Jahre DGGT.

    No full text
    • 

    corecore