458 research outputs found

    Theoretical prediction of multiferroicity in double perovskite Y2_2NiMnO6_6

    Full text link
    We put forward double perovskites of the R2_2NiMnO6_6 family (with RR a rare-earth atom) as a new class of multiferroics on the basis of {\it ab initio} density functional calculations. We show that changing RR from La to Y drives the ground-state from ferromagnetic to antiferromagnetic with \uparrow\uparrow\downarrow\downarrow spin patterns. This E^*-type ordering breaks inversion symmetry and generates a ferroelectric polarization of few μC/cm2\mu C/cm^2. By analyzing a model Hamiltonian we understand the microscopic origin of this transition and show that an external electric field can be used to tune the transition, thus allowing electrical control of the magnetization.Comment: 4 pages, 3 figure

    High frequency polarization switching of a thin ferroelectric film

    Full text link
    We consider both experimentally and analytically the transient oscillatory process that arises when a rapid change in voltage is applied to a BaxSr1xTiO3Ba_xSr_{1-x}TiO_3 ferroelectric thin film deposited on an Mg0Mg0 substrate. High frequency (108rad/s\approx 10^{8} rad/s) polarization oscillations are observed in the ferroelectric sample. These can be understood using a simple field-polarization model. In particular we obtain analytic expressions for the oscillation frequency and the decay time of the polarization fluctuation in terms of the material parameters. These estimations agree well with the experimental results

    Geometric representations for minimalist grammars

    Full text link
    We reformulate minimalist grammars as partial functions on term algebras for strings and trees. Using filler/role bindings and tensor product representations, we construct homomorphisms for these data structures into geometric vector spaces. We prove that the structure-building functions as well as simple processors for minimalist languages can be realized by piecewise linear operators in representation space. We also propose harmony, i.e. the distance of an intermediate processing step from the final well-formed state in representation space, as a measure of processing complexity. Finally, we illustrate our findings by means of two particular arithmetic and fractal representations.Comment: 43 pages, 4 figure

    Terminological Issues of Sanitary-Epidemiological Welfare Provision Both in Russia and on the Global Scale

    Get PDF
    Discussed is the build-up of a term “sanitary protection of the territories”. Regardless of commonly accepted definition of sanitation as a discipline that studies issues of public hygiene, sanitary protection of the territories, being for the most part an epidemiological phenomenon and an element of epidemiology, has maintained historically developed attribute “sanitary”. Demonstrated is the fact that variations in interpretation of the terms in the sphere of sanitary protection of the territories in various contexts of international intercourse (WHO and SIC) do not affect general concept of the issue and choice of ways for handling a problem as regards provision of sanitary-epidemiological welfare of the population. Objectives and content of the two notions formalized in IHR (2005), – “global epidemiological surveillance” plus “response measures” – predetermine their equivalence (in reference to the situations covered in the document), to the definitions “epidemiological surveillance” plus “sanitary protection”, applied to in the territory of CIS counties

    Ground State of Relaxor Ferroelectric Pb(Zn1/3Nb2/3)O3Pb(Zn_{1/3}Nb_{2/3})O_3

    Full text link
    High energy x-ray diffraction measurements on Pb(Zn1/3_{1/3}Nb2/3_{2/3})O3_3 (PZN) single crystals show that the system does not have a rhombohedral symmetry at room temperature as previously believed. The new phase (X) in the bulk of the crystal gives Bragg peaks similar to that of a nearly cubic lattice with a slight tetragonal distortion. The Bragg profile remains sharp with no evidence of size broadening due to the polar micro crystals (MC). However, in our preliminary studies of the skin, we have found the expected rhombohedral (R) phase as a surface state. On the other hand, studies on an electric-field poled PZN single crystal clearly indicate a rhombohedral phase at room temperature.Comment: 11 pages with 3 figure

    Tensors and compositionality in neural systems

    Get PDF
    Neither neurobiological nor process models of meaning composition specify the operator through which constituent parts are bound together into compositional structures. In this paper, we argue that a neurophysiological computation system cannot achieve the compositionality exhibited in human thought and language if it were to rely on a multiplicative operator to perform binding, as the tensor product (TP)-based systems that have been widely adopted in cognitive science, neuroscience and artificial intelligence do. We show via simulation and two behavioural experiments that TPs violate variable-value independence, but human behaviour does not. Specifically, TPs fail to capture that in the statements fuzzy cactus and fuzzy penguin, both cactus and penguin are predicated by fuzzy(x) and belong to the set of fuzzy things, rendering these arguments similar to each other. Consistent with that thesis, people judged arguments that shared the same role to be similar, even when those arguments themselves (e.g., cacti and penguins) were judged to be dissimilar when in isolation. By contrast, the similarity of the TPs representing fuzzy(cactus) and fuzzy(penguin) was determined by the similarity of the arguments, which in this case approaches zero. Based on these results, we argue that neural systems that use TPs for binding cannot approximate how the human mind and brain represent compositional information during processing. We describe a contrasting binding mechanism that any physiological or artificial neural system could use to maintain independence between a role and its argument, a prerequisite for compositionality and, thus, for instantiating the expressive power of human thought and language in a neural system

    Modeling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects

    Full text link
    We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. Exactly we have modified Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic one and the various hysteresis loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films.Comment: 21 pages, 10 figures, sent to Journal of Physics: Condensed Matte
    corecore