362 research outputs found
Serum protein profiles as potential biomarkers for infectious disease status in pigs
<p>Abstract</p> <p>Background</p> <p>In veterinary medicine and animal husbandry, there is a need for tools allowing the early warning of diseases. Preferably, tests should be available that warn farmers and veterinarians during the incubation periods of disease and before the onset of clinical signs. The objective of this study was to explore the potential of serum protein profiles as an early biomarker for infectious disease status. Serum samples were obtained from an experimental pig model for porcine circovirus-associated disease (PCVAD), consisting of Porcine Circovirus type 2 (PCV2) infection in combination with either Porcine Parvovirus (PPV) or Porcine Reproductive and Respiratory Syndrome virus (PRRSV). Sera were collected before and after onset of clinical signs at day 0, 5 and 19 post infection. Serum protein profiles were evaluated against sera from non-infected control animals.</p> <p>Results</p> <p>Protein profiles were generated by SELDI-TOF mass spectrometry in combination with the Proteominerâ„¢ technology to enrich for low-abundance proteins. Based on these protein profiles, the experimentally infected pigs could be classified according to their infectious disease status. Before the onset of clinical signs 88% of the infected animals could be classified correctly, after the onset of clinical sigs 93%. The sensitivity of the classification appeared to be high. The protein profiles could distinguish between separate infection models, although specificity was moderate to low. Classification of PCV2/PRRSV infected animals was superior compared to PCV2/PPV infected animals. Limiting the number of proteins in the profiles (ranging from 568 to 10) had only minor effects on the classification performance.</p> <p>Conclusions</p> <p>This study shows that serum protein profiles have potential for detection and identification of viral infections in pigs before clinical signs of the disease become visible.</p
pH Biosensing by PI4P Regulates Cargo Sorting at the TGN
Phosphoinositides, diacylglycerolpyrophosphate, ceramide-1-phosphate, and phosphatidic acid belong to a unique class of membrane signaling lipids that contain phosphomonoesters in their headgroups having pKa values in the physiological range. The phosphomonoester headgroup of phosphatidic acid enables this lipid to act as a pH biosensor as changes in its protonation state with intracellular pH regulate binding to effector proteins. Here, we demonstrate that binding of pleckstrin homology (PH) domains to phosphatidylinositol 4-phosphate (PI4P) in the yeast trans-Golgi network (TGN) is dependent on intracellular pH, indicating PI4P is a pH biosensor. pH biosensing by TGN PI4P in response to nutrient availability governs protein sorting at the TGN, likely by regulating sterol transfer to the TGN by Osh1, a member of the conserved oxysterol-binding protein (OSBP) family of lipid transfer proteins. Thus, pH biosensing by TGN PI4P allows for direct metabolic regulation of protein trafficking and cell growth
Insights from Amphioxus into the Evolution of Vertebrate Cartilage
Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm
Leg blood flow measurements using venous occlusion plethysmography during head-up tilt
We tested whether venous occlusion plethysmography (VOP) is an appropriate method to measure calf blood flow (CBF) during head-up tilt (HUT). CBF measured with VOP was compared with superficial femoral artery blood flow as measured by Doppler ultrasound during incremental tilt angles. Measurements of both methods correlated well (r = 0.86). Reproducibility of VOP was fair in supine position and 30° HUT (CV: 11%–15%). This indicates that VOP is an applicable tool to measure leg blood flow during HUT, especially up to 30° HUT
Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1
Smits THM, Rezzonico F, Kamber T, et al. Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1. PLoS ONE. 2011;6(7): e22247.Background: Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. Principal Findings: Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. Conclusions: Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems
A proof of principle for using adaptive testing in routine Outcome Monitoring: the efficiency of the Mood and Anxiety Symptoms Questionnaire -Anhedonic Depression CAT
<p>Abstract</p> <p>Background</p> <p>In Routine Outcome Monitoring (ROM) there is a high demand for short assessments. Computerized Adaptive Testing (CAT) is a promising method for efficient assessment. In this article, the efficiency of a CAT version of the Mood and Anxiety Symptom Questionnaire, - Anhedonic Depression scale (MASQ-AD) for use in ROM was scrutinized in a simulation study.</p> <p>Methods</p> <p>The responses of a large sample of patients (<it>N </it>= 3,597) obtained through ROM were used. The psychometric evaluation showed that the items met the requirements for CAT. In the simulations, CATs with several measurement precision requirements were run on the item responses as if they had been collected adaptively.</p> <p>Results</p> <p>CATs employing only a small number of items gave results which, both in terms of depression measurement and criterion validity, were only marginally different from the results of a full MASQ-AD assessment.</p> <p>Conclusions</p> <p>It was concluded that CAT improved the efficiency of the MASQ-AD questionnaire very much. The strengths and limitations of the application of CAT in ROM are discussed.</p
Some recommendations for developing multidimensional computerized adaptive tests for patient-reported outcomes
PURPOSE: Multidimensional item response theory and computerized adaptive testing (CAT) are increasingly used in mental health, quality of life (QoL), and patient-reported outcome measurement. Although multidimensional assessment techniques hold promises, they are more challenging in their application than unidimensional ones. The authors comment on minimal standards when developing multidimensional CATs. METHODS: Prompted by pioneering papers published in QLR, the authors reflect on existing guidance and discussions from different psychometric communities, including guidelines developed for unidimensional CATs in the PROMIS project. RESULTS: The commentary focuses on two key topics: (1) the design, evaluation, and calibration of multidimensional item banks and (2) how to study the efficiency and precision of a multidimensional item bank. The authors suggest that the development of a carefully designed and calibrated item bank encompasses a construction phase and a psychometric phase. With respect to efficiency and precision, item banks should be large enough to provide adequate precision over the full range of the latent constructs. Therefore CAT performance should be studied as a function of the latent constructs and with reference to relevant benchmarks. Solutions are also suggested for simulation studies using real data, which often result in too optimistic evaluations of an item bank's efficiency and precision. DISCUSSION: Multidimensional CAT applications are promising but complex statistical assessment tools which necessitate detailed theoretical frameworks and methodological scrutiny when testing their appropriateness for practical applications. The authors advise researchers to evaluate item banks with a broad set of methods, describe their choices in detail, and substantiate their approach for validation
- …