40,411 research outputs found
A Nearly Scale Invariant Spectrum of Gravitational Radiation from Global Phase Transitions
Using a large N sigma model approximation we explicitly calculate the power
spectrum of gravitational waves arising from a global phase transition in the
early universe and we confirm that it is scale invariant, implying an
observation of such a spectrum may not be a unique feature of inflation.
Moreover, the predicted amplitude can be over 3 orders of magnitude larger than
the naive dimensional estimate, implying that even a transition that occurs
after inflation may dominate in Cosmic Microwave Background polarization or
other gravity wave signals.Comment: 4 pages, PRL published versio
Critical review of the impacts of grazing intensity on soil organic carbon storage and other soil quality indicators in extensively managed grasslands
Acknowledgements This work contributes to the N-Circle project (grant number BB/N013484/1), and CINAg (BB/N013468/1) Virtual Joint Centres on Agricultural Nitrogen (funded by the Newton Fund via UK BBSRC/NERC), U-GRASS (grant number NE/M016900/1), the Belmont Forum/FACCE-JPI DEVIL project (grant number NE/M021327/1), Soils-R-GGREAT (grant number NE/P019455/1), ADVENT (grant number NE/M019713/1), Sêr Cymru LCEE-NRN project, Climate-Smart Grass and the Scottish Government’s Strategic Research Programme.Peer reviewedPublisher PD
A New Class of non-Hermitian Quantum Hamiltonians with PT Symmetry
In a remarkable development Bender and coworkers have shown that it is
possible to formulate quantum mechanics consistently even if the Hamiltonian
and other observables are not Hermitian. Their formulation, dubbed PT quantum
mechanics, replaces hermiticity by another set of requirements, notably that
the Hamiltonian should be invariant under the discrete symmetry PT, where P
denotes parity and T denotes time reversal. All prior work has focused on the
case that time reversal is even (T^2 = 1). We generalize the formalism to the
case of odd time reversal (T^2 = -1). We discover an analogue of Kramer's
theorem for PT quantum mechanics, present a prototypical example of a PT
quantum system with odd time reversal, and discuss potential applications of
the formalism. Odd time reversal symmetry applies to fermionic systems
including quarks and leptons and a plethora of models in nuclear, atomic and
condensed matter physics. PT quantum mechanics makes it possible to enlarge the
set of possible Hamiltonians that physicists could deploy to describe
fundamental physics beyond the standard model or for the effective description
of condensed matter phenomena.Comment: Replaced submitted version with accepted version; to appear in Phys
Rev
An X-Ray Study of the Supernova Remnant G290.1-0.8
G290.1-0.8 (MSH 11-61A) is a supernova remnant (SNR) whose X-ray morphology
is centrally bright. However, unlike the class of X-ray composite SNRs whose
centers are dominated by nonthermal emission, presumably driven by a central
pulsar, we show that the X-ray emission from G290.1-0.8 is thermal in nature,
placing the remnant in an emerging class which includes such remnants as W44,
W28, 3C391, and others. The evolutionary sequence which leads to such X-ray
properties is not well understood. Here we investigate two scenarios for such
emission: evolution in a cloudy interstellar medium, and early-stage evolution
of a remnant into the radiative phase, including the effects of thermal
conduction. We construct models for these scenarios in an attempt to reproduce
the observed center-filled X-ray properties of G290.1-0.8, and we derive the
associated age, energy, and ambient density conditions implied by the models.
We find that for reasonable values of the explosion energy, the remnant age is
of order (1 - 2) x 10^{4} yr. This places a fairly strong constraint on any
association between G290.1-0.8 and PSR J1105-610, which would require an
anomalously large velocity for the pulsar.Comment: 7 pages, 7 figures, ApJ, accepte
Lipopolysaccharide and toll-like receptor 4 in dogs with congenital portosystemic shunts
Surgical attenuation of a congenital portosystemic shunt (CPSS) results in increased portal vein perfusion, liver growth and clinical improvement. Portal lipopolysaccharide (LPS) is implicated in liver regeneration via toll-like receptor (TLR) 4 mediated cytokine activation. The aim of this study was to investigate factors associated with LPS in dogs with CPSS. Plasma LPS concentrations were measured in the peripheral and portal blood using a limulus amoebocyte lysate (LAL) assay.
LPS concentration was significantly greater in the portal blood compared to peripheral blood in dogs with CPSS (P = 0.046) and control dogs (P = 0.002). LPS concentrations in the peripheral (P = 0.012) and portal (P = 0.005) blood of dogs with CPSS were significantly greater than those of control dogs. The relative mRNA expression of cytokines and TLRs was measured in liver biopsies from dogs with CPSS using quantitative PCR. TLR4 expression significantly increased following partial CPSS attenuation (P = 0.020). TLR4 expression was significantly greater in dogs that tolerated complete CPSS attenuation (P = 0.011) and those with good portal blood flow on pre-attenuation (P = 0.004) and post-attenuation (P = 0.015) portovenography. Serum interleukin (IL)-6 concentration was measured using a canine specific ELISA and significantly increased 24 h following CPSS attenuation (P < 0.001). Portal LPS was increased in dogs with CPSS, consistent with decreased hepatic clearance. TLR4 mRNA expression was significantly associated with portal blood flow and increased following surgery. These findings support the concept that portal LPS delivery is important in the hepatic response to surgical attenuation. Serum IL-6 significantly increased following surgery, consistent with LPS stimulation via TLR4, although this increase might be non-specific
Cryogenic propellant venting under low pressure conditions final report
Cryogenic propellant venting under low pressure conditions - heat-transfer coefficients for two- phase, single component, solid-gas mixture flow in short, vertical tub
Petrography and Geochemistry of Metals in Almahata Sitta Ureilites
Ureilites are ultramafic achondrites, predominantly composed of olivine and pyroxenes with accessory carbon, metal and sulfide. The majority of ureilites are believed to represent the mantle of the ureilite parent body (UPB) [1]. Although ureilites have lost much of their original metal [2], the metal that remains retains a record of the formative processes. Almahata Sitta is predominantly composed of unbrecciated ureilites with a wide range of silicate compositions [3,4]. As a fall it presents a rare opportunity to examine fresh ureilite metal in-situ, and analyzing their highly siderophile element (HSE) ratios gives clues to their formation. Bulk siderophile element analyses of Almahata Sitta fall within the range observed in other ureilites [5]. We have examined the metals in seven ureilitic samples of Almahata Sitta (AS) and one associated chondrite fragment (AS#25)
- …