1,431 research outputs found

    Leptogenesis from Pseudo-Scalar Driven Inflation

    Full text link
    We examine recent claims for a considerable amount of leptogenesis, in some inflationary scenarios, through the gravitational anomaly in the lepton number current. We find that when the short distances contributions are properly included the amount of lepton number generated is actually much smaller.Comment: JHEP style, 11 pages. Corrected typ

    Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite

    Get PDF
    The inelastic electron tunneling spectrum (IETS)of highly oriented pyrolitic graphite (HOPG) has been measured with scanning tunneling spectroscopy (STS) at 6K. The observed spectral features are in very good agreement with the vibrational density of states (vDOS) of graphite calculated from first principles. We discuss the enhancement of certain phonon modes by phonon-assisted tunneling in STS based on the restrictions imposed by the electronic structure of graphite. We also demonstrate for the first time the local excitation of surface-plasmons in IETS which are detected at an energy of 40 meV.Comment: PRB rapid communication, submitte

    Vlasov-Maxwell, self-consistent electromagnetic wave emission simulations in the solar corona

    Full text link
    1.5D Vlasov-Maxwell simulations are employed to model electromagnetic emission generation in a fully self-consistent plasma kinetic model for the first time in the solar physics context. The simulations mimic the plasma emission mechanism and Larmor drift instability in a plasma thread that connects the Sun to Earth with the spatial scales compressed appropriately. The effects of spatial density gradients on the generation of electromagnetic radiation are investigated. It is shown that 1.5D inhomogeneous plasma with a uniform background magnetic field directed transverse to the density gradient is aperiodically unstable to Larmor-drift instability. The latter results in a novel effect of generation of electromagnetic emission at plasma frequency. When density gradient is removed (i.e. when plasma becomes stable to Larmor-drift instability) and a lowlow density, super-thermal, hot beam is injected along the domain, in the direction perpendicular to the magnetic field, plasma emission mechanism generates non-escaping Langmuir type oscillations which in turn generate escaping electromagnetic radiation. It is found that in the spatial location where the beam is injected, the standing waves, oscillating at the plasma frequency, are excited. These can be used to interpret the horizontal strips observed in some dynamical spectra. Quasilinear theory predictions: (i) the electron free streaming and (ii) the beam long relaxation time, in accord with the analytic expressions, are corroborated via direct, fully-kinetic simulation. Finally, the interplay of Larmor-drift instability and plasma emission mechanism is studied by considering densedense electron beam in the Larmor-drift unstable (inhomogeneous) plasma. http://www.maths.qmul.ac.uk/~tsiklauri/movie1.mpg * http://www.maths.qmul.ac.uk/~tsiklauri/movie2.mpg * http://www.maths.qmul.ac.uk/~tsiklauri/movie3.mpgComment: Solar Physics (in press, the final, accepted version

    Physical Multimorbidity and Sarcopenia among Adults Aged ≥65 Years in Low- and Middle-Income Countries

    Get PDF
    Introduction: Physical multimorbidity is plausibly linked to sarcopenia. However, to date, only a few studies exist on this topic, and none have examined this association in low- and middle-income countries (LMICs). Thus, we aimed to investigate the association between multimorbidity and sarcopenia in a sample of older adults from six LMICs (China, Ghana, India, Mexico, Russia, South Africa). Methods: Cross-sectional, community-based data from the WHO Study on Global Ageing and Adult Health (SAGE) were analysed. Sarcopenia was defined as having low skeletal muscle mass (SMM) and weak handgrip strength, while severe sarcopenia was defined as having low SMM, weak handgrip strength, and slow gait speed. A total of 11 physical chronic conditions were assessed and multimorbidity referred to ≥2 chronic conditions. Multivariable logistic regression analysis was conducted. Results: Data on 14,585 adults aged ≥65 years were analysed (mean age 72.6 years, SD 11.5 years; 53.7% females). Adjusted estimates showed that compared to no chronic physical conditions, ≥2 conditions are significantly associated with 1.49 (95% CI = 1.02–2.19) and 2.52 (95% CI = 1.53–4.15) times higher odds for sarcopenia and severe sarcopenia, respectively. Conclusions: In this large sample of older adults from LMICs, physical multimorbidity was significantly associated with sarcopenia and severe sarcopenia. Our study results tentatively suggest that targeting those with multimorbidity may aid in the prevention of sarcopenia, pending future longitudinal research

    A New Relativistic High Temperature Bose-Einstein Condensation

    Get PDF
    We discuss the properties of an ideal relativistic gas of events possessing Bose-Einstein statistics. We find that the mass spectrum of such a system is bounded by μm2M/μK,\mu \leq m\leq 2M/\mu _K, where μ\mu is the usual chemical potential, MM is an intrinsic dimensional scale parameter for the motion of an event in space-time, and μK\mu _K is an additional mass potential of the ensemble. For the system including both particles and antiparticles, with nonzero chemical potential μ,\mu , the mass spectrum is shown to be bounded by μm2M/μK,|\mu |\leq m\leq 2M/\mu _K, and a special type of high-temperature Bose-Einstein condensation can occur. We study this Bose-Einstein condensation, and show that it corresponds to a phase transition from the sector of continuous relativistic mass distributions to a sector in which the boson mass distribution becomes sharp at a definite mass M/μK.M/\mu _K. This phenomenon provides a mechanism for the mass distribution of the particles to be sharp at some definite value.Comment: Latex, 22 page

    Observations of quasi-periodic solar X-ray emission as a result of MHD oscillations in a system of multiple flare loops

    Full text link
    We investigate the solar flare of 20 October 2002. The flare was accompanied by quasi-periodic pulsations (QPP) of both thermal and nonthermal hard X-ray emissions (HXR) observed by RHESSI in the 3-50 keV energy range. Analysis of the HXR time profiles in different energy channels made with the Lomb periodogram indicates two statistically significant time periods of about 16 and 36 seconds. The 36-second QPP were observed only in the nonthermal HXR emission in the impulsive phase of the flare. The 16-second QPP were more pronounced in the thermal HXR emission and were observed both in the impulsive and in the decay phases of the flare. Imaging analysis of the flare region, the determined time periods of the QPP and the estimated physical parameters of magnetic loops in the flare region allow us to interpret the observations as follows. 1) In the impulsive phase energy was released and electrons were accelerated by successive acts with the average time period of about 36 seconds in different parts of two spatially separated, but interacting loop systems of the flare region. 2) The 36-second periodicity of energy release could be caused by the action of fast MHD oscillations in the loops connecting these flaring sites. 3) During the first explosive acts of energy release the MHD oscillations (most probably the sausage mode) with time period of 16 seconds were excited in one system of the flare loops. 4) These oscillations were maintained by the subsequent explosive acts of energy release in the impulsive phase and were completely damped in the decay phase of the flare.Comment: 14 pages, 4 figure

    A reversible theory of entanglement and its relation to the second law

    Get PDF
    We consider the manipulation of multipartite entangled states in the limit of many copies under quantum operations that asymptotically cannot generate entanglement. As announced in [Brandao and Plenio, Nature Physics 4, 8 (2008)], and in stark contrast to the manipulation of entanglement under local operations and classical communication, the entanglement shared by two or more parties can be reversibly interconverted in this setting. The unique entanglement measure is identified as the regularized relative entropy of entanglement, which is shown to be equal to a regularized and smoothed version of the logarithmic robustness of entanglement. Here we give a rigorous proof of this result, which is fundamentally based on a certain recent extension of quantum Stein's Lemma proved in [Brandao and Plenio, Commun. Math. 295, 791 (2010)], giving the best measurement strategy for discriminating several copies of an entangled state from an arbitrary sequence of non-entangled states, with an optimal distinguishability rate equal to the regularized relative entropy of entanglement. We moreover analyse the connection of our approach to axiomatic formulations of the second law of thermodynamics.Comment: 21 pages. revised versio

    Energetics, forces, and quantized conductance in jellium modeled metallic nanowires

    Full text link
    Energetics and quantized conductance in jellium modeled nanowires are investigated using the local density functional based shell correction method, extending our previous study of uniform in shape wires [C. Yannouleas and U. Landman, J. Phys. Chem. B 101, 5780 (1997)] to wires containing a variable shaped constricted region. The energetics of the wire (sodium) as a function of the length of the volume conserving, adiabatically shaped constriction leads to formation of self selecting magic wire configurations. The variations in the energy result in oscillations in the force required to elongate the wire and are directly correlated with the stepwise variations of the conductance of the nanowire in units of 2e^2/h. The oscillatory patterns in the energetics and forces, and the correlated stepwise variation in the conductance are shown, numerically and through a semiclassical analysis, to be dominated by the quantized spectrum of the transverse states at the narrowmost part of the constriction in the wire.Comment: Latex/Revtex, 11 pages with 5 Postscript figure

    Complex magnetic states of heavy fermion compound CeGe

    No full text
    The intermetallic compound CeGe exhibits unusual magnetic behavior due to the interplay between the Kondo and the antiferromagnetic coupling. This particular system is interesting because the Kondo temperature is close to the Néel temperature, resulting in a close competition between the low-temperature interactions, which can be tuned by means of varying external parameters such as pressure and applied magnetic field. Interestingly, magnetization measurements up to 12 kbar reveal that the Néel temperature is not affected by pressure. Measurements of the electrical resistivity, however, show that the sharp upturn appearing below TN is sensitive to pressures up to 15 kbar. This suggests that pressure may change the complex antiferromagnetic spin structure. The validity of an explanation based on the magnetic superzones seen in the rare earths is discussed here

    Evaluating the real-life effect of MP-AzeFlu on asthma outcomes in patients with allergic rhinitis and asthma in UK primary care

    Get PDF
    This study was supported by funding from BGP Products Operations GmbH (A MylanCompany). BGP Products Operations GmbH was given the opportunity to review the manuscript for medical and scientific accuracy as well as for intellectual property considerations. The dataset supporting the conclusions of this article was derived from the Optimum Patient Care Research Database (www.opcrd.co.uk). The OPCRD has ethical approval from the National Health Service (NHS) Research Authority to hold and process anonymized research data (Research Ethics Committee reference: 15/EM/0150). This study was approved by the Anonymized Data Ethics Protocols and Transparency (ADEPT) committee – the independent scientific advisory committee for the OPCRD. The authors do not have permission to give public access to the study dataset; researchers may request access to OPCRD data for their own purposes. Access to OCPRD can be made via the OCPRD website (https://opcrd.co.uk/our-database/data-requests/) or via the enquiries email [email protected] reviewedPublisher PD
    corecore