26,232 research outputs found

    Conduction mechanisms of epitaxial EuTiO3 thin films

    Full text link
    To investigate leakage current density versus electric field characteristics, epitaxial EuTiO3 thin films were deposited on (001) SrTiO3 substrates by pulsed laser deposition and were post-annealed in a reducing atmosphere. This investigation found that conduction mechanisms are strongly related to temperature and voltage polarity. It was determined that from 50 to 150 K the dominant conduction mechanism was a space-charge-limited current under both negative and positive biases. From 200 to 300 K, the conduction mechanism shows Schottky emission and Fowler-Nordheim tunneling behaviors for the negative and positive biases, respectively. This work demonstrates that Eu3+ is one source of leakage current in EuTiO3 thin films.Comment: 17 pages,4 figures, conferenc

    Tissue-specific regulatory elements in mammalian promoters

    Get PDF
    Transcription factor-binding sites and the cis-regulatory modules they compose are central determinants of gene expression. We previously showed that binding site motifs and modules in proximal promoters can be used to predict a significant portion of mammalian tissue-specific transcription. Here, we report on a systematic analysis of promoters controlling tissue-specific expression in heart, kidney, liver, pancreas, skeletal muscle, testis and CD4 T cells, for both human and mouse. We integrated multiple sources of expression data to compile sets of transcripts with strong evidence for tissue-specific regulation. The analysis of the promoters corresponding to these sets produced a catalog of predicted tissue-specific motifs and modules, and cis-regulatory elements. Predicted regulatory interactions are supported by statistical evidence, and provide a foundation for targeted experiments that will improve our understanding of tissue-specific regulatory networks. In a broader context, methods used to construct the catalog provide a model for the analysis of genomic regions that regulate differentially expressed genes

    Morphological and Physiological Response of Planeleaf Willow (Salix Planifolia Pursh.) to Simulated Browsing

    Get PDF
    Morphological and physiological responses of planeleaf willow (Salix planefolia Pursh.) to simulated browsing were studied under controlled conditions. The treatments consisted of every combination of three clipping intensities (30%, 60% and 90% of current twigs length removal) and three clipping timings (late winter, early spring and mid-summer). Increased clipping intensity stimulated bud activation; increased total leaf area and leaf size and increased the length of current yearā€™s twigs. Mid-summer browsing increased the total number of leaves, the number of current twigs and decreased the length of current twigs. Higher browsing intensity resulted in higher photosynthetic rate of recently matured leaves

    Spatial Correlations in Dynamical Mean Field Theory

    Full text link
    We further develop an extended dynamical mean field approach introduced earlier. It goes beyond the standard D=āˆžD=\infty dynamical mean field theory by incorporating quantum fluctuations associated with intersite (RKKY-like) interactions. This is achieved by scaling the intersite interactions to the same power in 1/D as that for the kinetic terms. In this approach, a correlated lattice problem is reduced to a single-impurity Anderson model with additional self-consistent bosonic baths. Here, we formulate the approach in terms of perturbation expansions. We show that the two-particle vertex functions are momentum-dependent, while the single-particle self-energy remains local. In spite of this, the approach is conserving. Finally, we also determine the form of a momentum-dependent dynamical susceptibility; the resulting expression relates it to the corresponding Weiss field, local correlation function and (momentum-dependent) intersite coupling.Comment: 28 pages, REVTEX, 8 figures include

    Relativistic Harmonic Oscillator with Spin Symmetry

    Full text link
    The eigenfunctions and eigenenergies for a Dirac Hamiltonian with equal scalar and vector harmonic oscillator potentials are derived. Equal scalar and vector potentials may be applicable to the spectrum of an antinucleion imbedded in a nucleus. Triaxial, axially deformed, and spherical oscillator potentials are considered. The spectrum has a spin symmetry for all cases and, for the spherical harmonic oscillator potential, a higher symmetry analogous to the SU(3) symmetry of the non-relativistic harmonic oscillator is discussed

    Random Fields from Quenched Disorder in an Archetype for Correlated Electrons: the Parallel Spin Stripe Phase of La1.6āˆ’x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4 at the 1/8 Anomaly

    Full text link
    The parallel stripe phase is remarkable both in its own right, and in relation to the other phases it co-exists with. Its inhomogeneous nature makes such states susceptible to random fields from quenched magnetic vacancies. We argue this is the case by introducing low concentrations of nonmagnetic Zn impurities (0-10%) into La1.6āˆ’x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4 (Nd-LSCO) with xx = 0.125 in single crystal form, well below the percolation threshold of āˆ¼\sim 41% for two-dimensional (2D) square lattice. Elastic neutron scattering measurements on these crystals show clear magnetic quasi-Bragg peaks at all Zn dopings. While all the Zn-doped crystals display order parameters that merge into each other and the background at āˆ¼\sim 68 K, the temperature dependence of the order parameter as a function of Zn concentration is drastically different. This result is consistent with meandering charge stripes within the parallel stripe phase, which are pinned in the presence of quenched magnetic vacancies. In turn it implies vacancies that preferentially occupy sites within the charge stripes, and hence that can be very effective at disrupting superconductivity in Nd-LSCO (xx = 0.125), and, by extension, in all systems exhibiting parallel stripes

    The Quantum-Mechanical Position Operator in Extended Systems

    Full text link
    The position operator (defined within the Schroedinger representation in the standard way) becomes meaningless when periodic boundary conditions are adopted for the wavefunction, as usual in condensed matter physics. We show how to define the position expectation value by means of a simple many-body operator acting on the wavefunction of the extended system. The relationships of the present findings to the Berry-phase theory of polarization are discussed.Comment: Four pages in RevTe

    Enhancement of Transition Temperature in FexSe0.5Te0.5 Film via Iron Vacancies

    Get PDF
    The effects of iron deficiency in FexSe0.5Te0.5 thin films (0.8<x<1) on superconductivity and electronic properties have been studied. A significant enhancement of the superconducting transition temperature (TC) up to 21K was observed in the most Fe deficient film (x=0.8). Based on the observed and simulated structural variation results, there is a high possibility that Fe vacancies can be formed in the FexSe0.5Te0.5 films. The enhancement of TC shows a strong relationship with the lattice strain effect induced by Fe vacancies. Importantly, the presence of Fe vacancies alters the charge carrier population by introducing electron charge carriers, with the Fe deficient film showing more metallic behavior than the defect-free film. Our study provides a means to enhance the superconductivity and tune the charge carriers via Fe vacancy, with no reliance on chemical doping.Comment: 15 pages, 4 figure

    Spin Reorientations Induced by Morphology Changes in Fe/Ag(001)

    Full text link
    By means of magneto-optical Kerr effect we observe spin reorientations from in-plane to out-of-plane and vice versa upon annealing thin Fe films on Ag(001) at increasing temperatures. Scanning tunneling microscopy images of the different Fe films are used to quantify the surface roughness. The observed spin reorientations can be explained with the experimentally acquired roughness parameters by taking into account the effect of roughness on both the magnetic dipolar and the magnetocrystalline anisotropy.Comment: 4 pages with 3 EPS figure

    Effects of increasing zinc oxide on starter pig growth performance

    Get PDF
    Four hundred and twenty pigs (initially 9.8 lb and 13 d of age) were used to evaluate the effects of increasing zinc oxide in starter diets. Results that suggest 3,000 ppm and 2,000 ppm zinc, from zinc oxide, improve growth performance in phase I and II diets, respectively.; Swine Day, Manhattan, KS, November 16, 199
    • ā€¦
    corecore