7,493 research outputs found
Development of a Dairy Management Information Web Site
The Dairy Manager Web site was developed to provide producers access to current, reliable management information. The site is designed for efficient use by the producer or county Extension educator and contains compiled, reviewed, specific, and current dairy management information. The site is updated frequently and a panel of experts in various fields related to dairy production and management review the material prior to posting to the Web site
Tonotopic representation of loudness in the human cortex
A prominent feature of the auditory system is that neurons show tuning to audio frequency; each neuron has a characteristic frequency (CF) to which it is most sensitive. Furthermore, there is an orderly mapping of CF to position, which is called tonotopic organization and which is observed at many levels of the auditory system. In a previous study (Thwaites et al., 2016) we examined cortical entrainment to two auditory transforms predicted by a model of loudness, instantaneous loudness and short-term loudness, using speech as the input signal. The model is based on the assumption that neural activity is combined across CFs (i.e. across frequency channels) before the transform to short-term loudness. However, it is also possible that short-term loudness is determined on a channel-specific basis. Here we tested these possibilities by assessing neural entrainment to the overall and channel-specific instantaneous loudness and the overall and channel-specific short-term loudness. The results showed entrainment to channel-specific instantaneous loudness at latencies of 45 and 100 ms (bilaterally, in and around Heschl's gyrus). There was entrainment to overall instantaneous loudness at 165 ms in dorso-lateral sulcus (DLS). Entrainment to overall short-term loudness occurred primarily at 275 ms, bilaterally in DLS and superior temporal sulcus. There was only weak evidence for entrainment to channel-specific short-term loudness.This work was supported by an ERC Advanced Grant (230570, ‘Neurolex’) to WMW, by MRC Cognition and Brain Sciences Unit (CBU) funding to WMW (U.1055.04.002.00001.01), and by EPSRC grant RG78536 to JS and BM
Interacting Supernovae: Types IIn and Ibn
Supernovae (SNe) that show evidence of strong shock interaction between their
ejecta and pre-existing, slower circumstellar material (CSM) constitute an
interesting, diverse, and still poorly understood category of explosive
transients. The chief reason that they are extremely interesting is because
they tell us that in a subset of stellar deaths, the progenitor star may become
wildly unstable in the years, decades, or centuries before explosion. This is
something that has not been included in standard stellar evolution models, but
may significantly change the end product and yield of that evolution, and
complicates our attempts to map SNe to their progenitors. Another reason they
are interesting is because CSM interaction is an efficient engine for making
bright transients, allowing super-luminous transients to arise from normal SN
explosion energies, and allowing transients of normal SN luminosities to arise
from sub-energetic explosions or low radioactivity yield. CSM interaction
shrouds the fast ejecta in bright shock emission, obscuring our normal view of
the underlying explosion, and the radiation hydrodynamics of the interaction is
challenging to model. The CSM interaction may also be highly non-spherical,
perhaps linked to binary interaction in the progenitor system. In some cases,
these complications make it difficult to definitively tell the difference
between a core-collapse or thermonuclear explosion, or to discern between a
non-terminal eruption, failed SN, or weak SN. Efforts to uncover the physical
parameters of individual events and connections to possible progenitor stars
make this a rapidly evolving topic that continues to challenge paradigms of
stellar evolution.Comment: Final draft of a chapter in the "SN Handbook". Accepted. 25 pages, 3
fig
Seeking the Real Adam Smith and Milton Friedman
In this paper we will analyze the relationship between free market principles and ethics through an exploration of how too many business managers often approach the ideas of Adam Smith and Milton Friedman. In doing so, we aim to provide a thoughtful foundation for future discussions of how we ought to navigate this intersection. We briefly examine questions such as: What is the relationship between the “best” economy in terms of efficiency and the common good for society? Is pursuing one’s individual economic advantage the same as promoting the general interest? As we analyze and discuss these questions, specifically in the context of Smith and Friedman, we also make some alternative normative assertions, grounded in social welfare, about adopting a broader societal perspective for the purpose of business
Higgs friends and counterfeits at hadron colliders
We consider the possibility of "Higgs counterfeits" - scalars that can be
produced with cross sections comparable to the SM Higgs, and which decay with
identical relative observable branching ratios, but which are nonetheless not
responsible for electroweak symmetry breaking. We also consider a related
scenario involving "Higgs friends," fields similarly produced through gg fusion
processes, which would be discovered through diboson channels WW, ZZ, gamma
gamma, or even gamma Z, potentially with larger cross sections times branching
ratios than for the Higgs. The discovery of either a Higgs friend or a Higgs
counterfeit, rather than directly pointing towards the origin of the weak
scale, would indicate the presence of new colored fields necessary for the
sizable production cross section (and possibly new colorless but electroweakly
charged states as well, in the case of the diboson decays of a Higgs friend).
These particles could easily be confused for an ordinary Higgs, perhaps with an
additional generation to explain the different cross section, and we emphasize
the importance of vector boson fusion as a channel to distinguish a Higgs
counterfeit from a true Higgs. Such fields would naturally be expected in
scenarios with "effective Z's," where heavy states charged under the SM produce
effective charges for SM fields under a new gauge force. We discuss the
prospects for discovery of Higgs counterfeits, Higgs friends, and associated
charged fields at the LHC.Comment: 27 pages, 5 figures. References added and typos fixe
Accessory phase perspectives for ore-forming processes and magmatic sulphide exploration in the Labrador Trough, northern Quebec, Canada
This is the author accepted manuscript. The final version is available from Canadian Science Publishing via the DOI in this recordThe compositions of resistant indicator minerals are diagnostic of their original host environment. They may be used to fingerprint different types of mineral deposit as well as vector towards them. We have characterised the composition of apatite and Fe–Ti oxides in variably mineralised mafic–ultramafic rock units of the Montagnais Sill Complex in the Labrador Trough to assess their suitability for vectoring towards magmatic sulphide occurrences. Two broad types of apatite were identified: (i) flu-oro-to hydroxy-apatite (Cl/(Cl+F) 0.5). The former reflects variable degrees of degassing and Cl loss during Rayleigh fractionation and is not indicative of Ni–Cu mineralisation or host rock. The latter exists only in sulphidic olivine cumulate units and thus may be used to vector towards similar rock types in the Labrador Trough. Ilmenite is the dominant oxide, except for the upper parts of differentiated gabbroic sills in which titanomagnetite is dominant. Magnetite occurs only as a secondary phase in serpentinised olivine cumulates and is not discriminative for magmatic sulphides. Ilmenite and titanomagnetite in the sulphidic olivine-bearing units have characteristically high Mg (~1000–10 000 ppm), Cr (~100–1000 ppm), and Ni (~10–1000 ppm) concentrations relative to those from other rock units. Their composition is consistent with Fe–Ti oxides derived from evolved sulphide melts in ultramafic-hosted Ni–Cu–(PGE) sulphide deposits and thus may be used to vector towards similar magmatic sulphide occurrences in the Labrador Trough.Natural Environment Research Council (NERC
Lightweight Interactions for Reciprocal Cooperation in a Social Network Game
The construction of reciprocal relationships requires cooperative
interactions during the initial meetings. However, cooperative behavior with
strangers is risky because the strangers may be exploiters. In this study, we
show that people increase the likelihood of cooperativeness of strangers by
using lightweight non-risky interactions in risky situations based on the
analysis of a social network game (SNG). They can construct reciprocal
relationships in this manner. The interactions involve low-cost signaling
because they are not generated at any cost to the senders and recipients.
Theoretical studies show that low-cost signals are not guaranteed to be
reliable because the low-cost signals from senders can lie at any time.
However, people used low-cost signals to construct reciprocal relationships in
an SNG, which suggests the existence of mechanisms for generating reliable,
low-cost signals in human evolution.Comment: 13 pages, 2 figure
Change and Aging Senescence as an adaptation
Understanding why we age is a long-lived open problem in evolutionary
biology. Aging is prejudicial to the individual and evolutionary forces should
prevent it, but many species show signs of senescence as individuals age. Here,
I will propose a model for aging based on assumptions that are compatible with
evolutionary theory: i) competition is between individuals; ii) there is some
degree of locality, so quite often competition will between parents and their
progeny; iii) optimal conditions are not stationary, mutation helps each
species to keep competitive. When conditions change, a senescent species can
drive immortal competitors to extinction. This counter-intuitive result arises
from the pruning caused by the death of elder individuals. When there is change
and mutation, each generation is slightly better adapted to the new conditions,
but some older individuals survive by random chance. Senescence can eliminate
those from the genetic pool. Even though individual selection forces always win
over group selection ones, it is not exactly the individual that is selected,
but its lineage. While senescence damages the individuals and has an
evolutionary cost, it has a benefit of its own. It allows each lineage to adapt
faster to changing conditions. We age because the world changes.Comment: 19 pages, 4 figure
- …