167 research outputs found
The CRaTER Special Issue of Space Weather: Building the observational foundation to deduce biological effects of space radiation
[1] The United States is preparing for exploration beyond low-Earth Orbit (LEO). However, the space radiation environment poses significant risks. The radiation hazard is potentially severe but not sufficiently well characterized to determine if long missions outside LEO can be accomplished with acceptable risk [Cucinotta et al., 2001; Schwadron et al., 2010; Cucinotta et al., 2010]. Radiation hazards may be over- or under-stated through incomplete characterization in terms of net quantities such as accumulated dose. Time-dependent characterization often changes acute risk estimates [NCRP, 1989; Cucinotta, 1999; Cucinotta et al., 2000; George et al., 2002]. For example, events with high accumulated doses but sufficiently low dose rates (/h) pose significantly reduced risks. Protons, heavy ions, and neutrons all contribute significantly to the radiation hazard. However, each form of radiation presents different biological effectiveness. As a result, quality factors and radiation-specific weighting factors are needed to assess biological effectiveness of different forms of radiation [e.g., NCRP 116, 1993] (Figure 1). More complete characterization must account for time-dependent radiation effects according to organ type, primary and secondary radiation composition, and acute effects (vomiting, sickness, and, at high exposures, death) versus chronic effects (such as cancer)
Radiation modeling in the Earth and Mars atmospheres using LRO/CRaTER with the EMMREM Module
Abstract We expand upon the efforts of Joyce et al. (2013), who computed the modulation potential at the Moon using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on the Lunar Reconnaissance Orbiter (LRO) spacecraft along with data products from the Earth-Moon-Mars Radiation Environment Module (EMMREM). Using the computed modulation potential, we calculate galactic cosmic ray (GCR) dose and dose equivalent rates in the Earth and Mars atmospheres for various altitudes over the course of the LRO mission. While we cannot validate these predictions by directly comparable measurement, we find that our results conform to expectations and are in good agreement with the nearest available measurements and therefore may be used as reasonable estimates for use in efforts in risk assessment in the planning of future space missions as well as in the study of GCRs. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other solar energetic particles measurements) is an online system designed to provide the scientific community with a comprehensive resource on the radiation environments of the inner heliosphere. The data products shown here will be incorporated into PREDICCS in order to further this effort and daily updates will be made available on the PREDICCS website (http://prediccs.sr.unh.edu). Key Points We model GCR dose and dose equivalent rates in Earth and Mars atmospheres Dose rates are in reasonable agreement with nearby measurements Data products will soon be made available on PREDICCS website
A novel research definition of bladder health in women and girls: Implications for research and public health promotion
BACKGROUND:Bladder health in women and girls is poorly understood, in part, due to absence of a definition for clinical or research purposes. This article describes the process used by a National Institutes of Health funded transdisciplinary research team (The Prevention of Lower Urinary Tract Symptoms [PLUS] Consortium) to develop a definition of bladder health. METHODS:The PLUS Consortium identified currently accepted lower urinary tract symptoms (LUTS) and outlined elements of storage and emptying functions of the bladder. Consistent with the World Health Organization's definition of health, PLUS concluded that absence of LUTS was insufficient and emphasizes the bladder's ability to adapt to short-term physical, psychosocial, and environmental challenges for the final definition. Definitions for subjective experiences and objective measures of bladder dysfunction and health were drafted. An additional bioregulatory function to protect against infection, neoplasia, chemical, or biologic threats was proposed. RESULTS:PLUS proposes that bladder health be defined as: "A complete state of physical, mental, and social well-being related to bladder function and not merely the absence of LUTS. Healthy bladder function permits daily activities, adapts to short-term physical or environmental stressors, and allows optimal well-being (e.g., travel, exercise, social, occupational, or other activities)." Definitions for each element of bladder function are reported with suggested subjective and objective measures. CONCLUSIONS:PLUS used a comprehensive transdisciplinary process to develop a bladder health definition. This will inform instrument development for evaluation of bladder health promotion and prevention of LUTS in research and public health initiatives
Does the worsening galactic cosmic radiation environment observed by CRaTER preclude future manned deep space exploration?
Abstract
The Sun and its solar wind are currently exhibiting extremely low densities and magnetic field strengths, representing states that have never been observed during the space age. The highly abnormal solar activity between cycles 23 and 24 has caused the longest solar minimum in over 80 years and continues into the unusually small solar maximum of cycle 24. As a result of the remarkably weak solar activity, we have also observed the highest fluxes of galactic cosmic rays in the space age and relatively small solar energetic particle events. We use observations from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on the Lunar Reconnaissance Orbiter to examine the implications of these highly unusual solar conditions for human space exploration. We show that while these conditions are not a show stopper for long-duration missions (e.g., to the Moon, an asteroid, or Mars), galactic cosmic ray radiation remains a significant and worsening factor that limits mission durations. While solar energetic particle events in cycle 24 present some hazard, the accumulated doses for astronauts behind 10 g/cm2 shielding are well below current dose limits. Galactic cosmic radiation presents a more significant challenge: the time to 3% risk of exposure-induced death (REID) in interplanetary space was less than 400 days for a 30 year old male and less than 300 days for a 30 year old female in the last cycle 23–24 minimum. The time to 3% REID is estimated to be ∼20% lower in the coming cycle 24–25 minimum. If the heliospheric magnetic field continues to weaken over time, as is likely, then allowable mission durations will decrease correspondingly. Thus, we estimate exposures in extreme solar minimum conditions and the corresponding effects on allowable durations
Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis
Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics
Synthesis of 3-D coronal-solar wind energetic particle acceleration modules
1. Introduction Acute space radiation hazards pose one of the most serious risks to future human and robotic exploration. Large solar energetic particle (SEP) events are dangerous to astronauts and equipment. The ability to predict when and where large SEPs will occur is necessary in order to mitigate their hazards. The Coronal-Solar Wind Energetic Particle Acceleration (C-SWEPA) modeling effort in the NASA/NSF Space Weather Modeling Collaborative [Schunk, 2014] combines two successful Living With a Star (LWS) (http://lws. gsfc.nasa.gov/) strategic capabilities: the Earth-Moon-Mars Radiation Environment Modules (EMMREM) [Schwadron et al., 2010] that describe energetic particles and their effects, with the Next Generation Model for the Corona and Solar Wind developed by the Predictive Science, Inc. (PSI) group. The goal of the C-SWEPA effort is to develop a coupled model that describes the conditions of the corona, solar wind, coronal mass ejections (CMEs) and associated shocks, particle acceleration, and propagation via physics-based modules. Assessing the threat of SEPs is a difficult problem. The largest SEPs typically arise in conjunction with X class flares and very fast (\u3e1000 km/s) CMEs. These events are usually associated with complex sunspot groups (also known as active regions) that harbor strong, stressed magnetic fields. Highly energetic protons generated in these events travel near the speed of light and can arrive at Earth minutes after the eruptive event. The generation of these particles is, in turn, believed to be primarily associated with the shock wave formed very low in the corona by the passage of the CME (injection of particles from the flare site may also play a role). Whether these particles actually reach Earth (or any other point) depends on their transport in the interplanetary magnetic field and their magnetic connection to the shock
Friends of Henderson Library Newsletter
In This Issue: Save the Date ; Volunteer Opportunities ; Social Networking & Henderson Library ; Ebooks-More than just Kindle or NOOK ; Attention all Eagles Fans ; Online Tutorials Using Adobe® Captivate® ; Henderson Heroes: Spotlight on Employees ; Blogging and Tagging with the Library ; Streamlining Workflow Using Wikis & Google Docs ; Password Now Required for Library Computers ; EagleScholar: Georgia Southern University\u27s Institutional Repository ; BYOM: Bring Your Own Mat...to the Library? ; Center for Research Libraries Membership ; The USA PATRIOT Act vs. the Constitutio
Converging on bladder health through design thinking: From an ecology of influence to a focused set of research questions
Lower urinary tract symptoms affect a substantial number of women in the United States (U.S.) and globally. In 2015, the Prevention of Lower Urinary tract Symptoms in women (PLUS) Research Consortium was funded to establish the scientific basis for prevention efforts by (1) understanding healthy bladder function and (2) identifying risk and protective factors for bladder health in women across the lifecourse. This transdisciplinary consortium generated a list of over 600 candidate risk and protective factors for bladder health in women and girls and refined and prioritized these into 29 focused research questions to inform a national longitudinal observational study in the U.S. This paper describes that process using design thinking, a human-centered set of principles and strategies by which innovations are developed, as a framework. Design thinking is an iterative process consisting of five stages: Empathizing with end-users of innovations, Defining core principles girding the work, Ideation of all possible solutions, and rapid-cycle Prototyping and Testing of solutions. Lessons learned are offered to inform future prevention science research endeavors that might benefit from such an approach
Simulation of the Response of the Inner Hair Cell Stereocilia Bundle to an Acoustical Stimulus
Mammalian hearing relies on a cochlear hydrodynamic sensor embodied in the inner
hair cell stereocilia bundle. It is presumed that acoustical stimuli induce a
fluid shear-driven motion between the tectorial membrane and the reticular
lamina to deflect the bundle. It is hypothesized that ion channels are opened by
molecular gates that sense tension in tip-links, which connect adjacent stepped
rows of stereocilia. Yet almost nothing is known about how the fluid and bundle
interact. Here we show using our microfluidics model how each row of stereocilia
and their associated tip links and gates move in response to an acoustical input
that induces an orbital motion of the reticular lamina. The model confirms the
crucial role of the positioning of the tectorial membrane in hearing, and
explains how this membrane amplifies and synchronizes the timing of peak tension
in the tip links. Both stereocilia rotation and length change are needed for
synchronization of peak tip link tension. Stereocilia length change occurs in
response to accelerations perpendicular to the oscillatory fluid shear flow.
Simulations indicate that nanovortices form between rows to facilitate diffusion
of ions into channels, showing how nature has devised a way to solve the
diffusive mixing problem that persists in engineered microfluidic devices
- …