136,430 research outputs found

    Dynamics and transport properties of Kondo insulators

    Full text link
    A many-body theory of paramagnetic Kondo insulators is described, focusing specifically on single-particle dynamics, scattering rates, d.c. transport and optical conductivities. This is achieved by development of a non-perturbative local moment approach to the symmetric periodic Anderson model within the framework of dynamical mean-field theory. Our natural focus is the strong coupling, Kondo lattice regime; in particular the resultant `universal' scaling behaviour in terms of the single, exponentially small low-energy scale characteristic of the problem. Dynamics/transport on all relevant (ω,T\omega, T) scales are considered, from the gapped/activated behaviour characteristic of the low-temperature insulator through to explicit connection to single-impurity physics at high ω\omega and/or TT; and for optical conductivities emphasis is given to the nature of the optical gap, the temperature scale responsible for its destruction, and the consequent clear distinction between indirect and direct gap scales. Using scaling, explicit comparison is also made to experimental results for d.c. transport and optical conductivites of Ce_3Bi_4Pt_3, SmB_6 and YbB_{12}. Good agreement is found, even quantitatively; and a mutually consistent picture of transport and optics results.Comment: 49 pages, 23 figure

    Automatic classification of eutrophication of inland lakes from spacecraft data

    Get PDF
    The author has identified the following significant results. Spacecraft data and computer techniques can be used to rapidly map and store onto digital tapes watershed land use information. Software is now available by which this land use information can be rapidly and economically extracted from the tapes and related to coliform counts and other lake contaminants (e.g. phosphorus). These tools are basic elements for determining those land use factors and sources of nutrients that accelerate eutrophication in lakes and reservoirs

    Light echoes reveal an unexpectedly cool Eta Carinae during its 19th-century Great Eruption

    Full text link
    Eta Carinae (Eta Car) is one of the most massive binary stars in the Milky Way. It became the second-brightest star in the sky during its mid-19th century "Great Eruption," but then faded from view (with only naked-eye estimates of brightness). Its eruption is unique among known astronomical transients in that it exceeded the Eddington luminosity limit for 10 years. Because it is only 2.3 kpc away, spatially resolved studies of the nebula have constrained the ejected mass and velocity, indicating that in its 19th century eruption, Eta Car ejected more than 10 M_solar in an event that had 10% of the energy of a typical core-collapse supernova without destroying the star. Here we report the discovery of light echoes of Eta Carinae which appear to be from the 1838-1858 Great Eruption. Spectra of these light echoes show only absorption lines, which are blueshifted by -210 km/s, in good agreement with predicted expansion speeds. The light-echo spectra correlate best with those of G2-G5 supergiant spectra, which have effective temperatures of ~5000 K. In contrast to the class of extragalactic outbursts assumed to be analogs of Eta Car's Great Eruption, the effective temperature of its outburst is significantly cooler than allowed by standard opaque wind models. This indicates that other physical mechanisms like an energetic blast wave may have triggered and influenced the eruption.Comment: Accepted for publication by Nature; 4 pages, 4 figures, SI: 6 pages, 3 figures, 5 table

    Observed Consequences of Presupernova Instability in Very Massive Stars

    Full text link
    This chapter concentrates on the deaths of very massive stars, the events leading up to their deaths, and how mass loss affects the resulting death. The previous three chapters emphasized the theory of wind mass loss, eruptions, and core collapse physics, but here we emphasize mainly the observational properties of the resulting death throes. Mass loss through winds, eruptions, and interacting binaries largely determines the wide variety of different types of supernovae that are observed, as well as the circumstellar environments into which the supernova blast waves expand. Connecting these observed properties of the explosions to the initial masses of their progenitor stars is, however, an enduring challenge and is especially difficult for very massive stars. Superluminous supernovae, pair instability supernovae, gamma ray bursts, and "failed" supernovae are all end fates that have been proposed for very massive stars, but the range of initial masses or other conditions leading to each of these (if they actually occur) are still very certain. Extrapolating to infer the role of very massive stars in the early universe is essentially unencumbered by observational constraints and still quite dicey.Comment: 39 pages, 5 figures, to appear as chapter in the book "Very Massive Stars in the Local Universe", ed. J. Vin

    Dissipation signatures of the normal and superfluid phases in torsion pendulum experiments with 3He in aerogel

    Get PDF
    We present data for energy dissipation factor (Q^{-1}) over a broad temperature range at various pressures of a torsion pendulum setup used to study 3He confined in a 98% open silica aerogel. Values for Q^{-1} above T_c are temperature independent and have a weak pressure dependence. Below T_c, a deliberate axial compression of the aerogel by 10% widens the range of metastability for a superfluid Equal Spin Pairing (ESP) state; we observe this ESP phase on cooling and the B phase on warming over an extended temperature region. While the dissipation for the B phase tends to zero as T goes to 0, Q^{-1} exhibits a peak value greater than that at T_c at intermediate temperatures. Values for Q^{-1} in the ESP phase are consistently higher than in the B phase and are proportional to \rho_s/\rho until the ESP to B phase transition is attained. We apply a viscoelastic collision-drag model, which couples the motion of the helium and the aerogel through a frictional relaxation time \tau_f. Our dissipation data is not sensitive to the damping due to the presumed small but non-zero value of \tau_f. The result is that an additional mechanism to dissipate energy not captured in the collision-drag model and related to the emergence of the superfluid order must exist. The extra dissipation below T_c is possibly associated with mutual friction between the superfluid phases and the clamped normal fluid. The pressure dependence of the measured dissipation in both superfluid phases is likely related to the pressure dependence of the gap structure of the "dirty" superfluid. The large dissipation in the ESP state is consistent with the phase being the A or the Polar with the order parameter nodes oriented in the plane of the cell and perpendicular to the aerogel anisotropy axis.Comment: 12 pages, 7 figure

    Integer quantum Hall effect on a six valley hydrogen-passivated silicon (111) surface

    Full text link
    We report magneto-transport studies of a two-dimensional electron system formed in an inversion layer at the interface between a hydrogen-passivated Si(111) surface and vacuum. Measurements in the integer quantum Hall regime demonstrate the expected sixfold valley degeneracy for these surfaces is broken, resulting in an unequal occupation of the six valleys and anisotropy in the resistance. We hypothesize the misorientation of Si surface breaks the valley states into three unequally spaced pairs, but the observation of odd filling factors, is difficult to reconcile with non-interacting electron theory.Comment: 4 pages, 4 figures, to appear in Physical Review Letter
    corecore