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We present data for energy dissipation factor (Q−1) over a broad temperature range at various
pressures of a torsion pendulum setup used to study 3He confined in a 98% open silica aerogel.
Values for Q−1 above Tc are temperature independent and have weak pressure dependence. Below
Tc, a deliberate axial compression of the aerogel by 10% widens the range of metastability for a
superfluid Equal Spin Pairing (ESP) state; we observe this ESP phase on cooling and the B phase
on warming over an extended temperature region. While the dissipation for the B phase tends to
zero as T → 0, Q−1 exhibits a peak value greater than that at Tc at intermediate temperatures.
Values for Q−1 in the ESP phase are consistently higher than in the B phase and are proportional to
ρs/ρ until the ESP to B phase transition is attained. We apply a viscoelastic collision-drag model,
which couples the motion of the helium and the aerogel through a frictional relaxation time τf . We
conclude that unless τf is an order of magnitude larger than expected, an additional mechanism
to dissipate energy not captured in the collision-drag model and related to the emergence of the
superfluid order must exist. The extra dissipation below Tc is possibly associated with mutual
friction between the superfluid phases and the clamped normal fluid. The pressure dependence of
the measured dissipation in both superfluid phases is likely related to the pressure dependence of
the gap structure of the “dirty” superfluid. The large dissipation in the ESP state is consistent with
the phase being the A or the Polar with the order parameter nodes oriented in the plane of the cell
and perpendicular to the aerogel anisotropy axis.

PACS numbers: 67.30.H-, 67.30.eh, 67.30.ht, 67.30.E-, 47.37.+q

I. INTRODUCTION

Unconventionally paired Fermi systems exhibit strong
sensitivity in their transport properties to the presence
of even a small degree of nonmagnetic impurities.1–6 For
the otherwise pure superfluid 3He, an elastic scatter-
ing mechanism, in addition to the inelastic two-particle
scattering processes, is provided by porous silica aero-
gel “impurities.”7–10 Since the discovery of superfluid-
ity of 3He in aerogel,11,12 the analogy of this so-called
“dirty” Fermi superfluid with “dirty” unconventional su-
perconductors has been investigated in the literature.
Transport measurements in the normal Fermi liquid
(spin,13,14 thermal conductivity,15,16 and viscosity17) re-
veal a crossover from an intrinsic inelastic quasiparticle-
quasiparticle (qp-qp) scattering rate at high tempera-
tures to a quasiparticle-impurity dominated relaxation
mechanism when the temperature is lowered.

In the 3He-aerogel composite system, the 3He is always
on the order of the zero-temperature coherence length
away from the aerogel strands. The zero-temperature
coherence length is defined to be ξ0 = }vF /2πkBTc. It
is expected that the superfluid order parameter is sup-
pressed and surface bound states exist near macroscopic
surfaces and domain walls.18–20 However, the aerogel
strands do not act as conventional surfaces – else super-
fluidity would be entirely suppressed. Instead, scattering
from the aerogel leads to a suppression of the superfluid
gap. We expect a spectrum of low energy excitations
inside the gap to appear, which could lead to a gapless

superfluid state in which the density of states is finite
around the entire Fermi surface.9 Evidence for such states
exists in thermal conductivity21 and heat capacity22 mea-
surements as T → 0, but the exact profile for the density
of states of the 3He in aerogel system and its dependence
on strong coupling effects is still not fully understood.

In order to probe the dynamics of the aerogel embed-
ded fluid, we have placed the experimental cell in the
head of a torsion pendulum. We track the frequency
and the quality factor (Q) of the pendulum as the tem-
perature is changed. Observing the frequency shift has
proved instrumental in studying the effects of disorder at
the onset of superfluid transition.11,23 However, due to
the close spacing between the aerogel strands (of the or-
der of 50 nm), even the small impurity limited viscosity
of the normal state 3He would be sufficient to clamp the
fluid at the audio frequencies (2.1 kHz) corresponding
to the torsional resonant mode we employ. In order to
probe the transport properties, we cannot rely on the fre-
quency shift data alone. Instead, in this article we focus
on the energy dissipation factor (Q−1) of the pendulum,
which should be sensitive to the Fermi surface excitations
discussed in the previous paragraph.

The aerogel sample is deliberately compressed along
the pendulum axis by 10%. It is generally accepted
that the aerogel anisotropy due to the axial compression
should favor the anisotropic, equal spin pairing (ESP)
superfluid 3He-A phase.24,25 Previously, we would have
also expected that the ` vector would preferentially align
along the axis of compression. However, recent pulsed
NMR tip angle measurements on axially compressed
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aerogel at moderate magnetic fields (both along and per-
pendicular to the strain axis) show that the ` vector tends
to be oriented in the plane of the cell and perpendicular
to the strain axis regardless of the direction of the mag-
netic field.26 Recent theoretical results27 also point to
the possibility of a Polar phase (also an ESP phase) with
a line of nodes away from the strain axis. In an ear-
lier work, we observed that the superfluid fraction in the
ESP phase is less than that in the B phase.23 If ` in the
A phase (nodal direction in the Polar phase) was aligned
perpendicular to the flow, we would instead observe the
superfluid fraction in the A phase exceeding that in the
B phase.28,29 Thus, consistent with the equal spin pair-
ing state realized in this experiment is either an A phase
with ` randomly oriented along the plane of the cell or a
Polar phase. Lacking NMR data to identify the phase at
zero magnetic field, we refer to the intervening phase as
ESP rather than the A/Polar phase.

The metastable ESP phase is supercooled to tempera-
tures well below the equilibrium ESP to B phase bound-
ary. On the other hand, after completion of the ESP to
B transition by further cooling the cell, the superfluid B
phase persists on warming and the ESP phase only reap-
pears in a region of small temperature width very close
to Tc. This results in a significant range of temperatures
over which we have ESP phase on cooling and B phase
on warming, and allows us to make a direct comparison
of the properties (ρs, Q

−1) of the two superfluid phases.
In the following sections, we briefly outline experimen-

tal details, and present the experimental data. Then we
discuss a model for the energy dissipation factor of the
torsion pendulum arising from the normal state fluid. Fi-
nally, we discuss the data below Tc, where we observe ad-
ditional dissipation intrinsic to the superfluid. We relate
our data to the presented theoretical model and propose
a possible mechanism that could account for the observed
behavior.

II. EXPERIMENTAL SETUP

A. Construction of the Torsion Pendulum

The torsion pendulum consisted of two hollow
beryllium-copper torsion rods: an upper one with a 1.27
mm outer diameter, and a lower one with an outer diam-
eter of 1.22 mm. A 1 mm diameter hole, bored through
both torsion rods, served as a fill line for the fluid into the
pendulum’s head. An epoxy joint coupled the pendulum
“head” to the upper torsion rod.

Two magnesium “wings”, electrically insulated from
the rest of the pendulum, were attached to the cylindri-
cal mass at the junction of the two torsion rods. Each
of the wings was maintained at 100 V bias with respect
to closely spaced adjacent electrodes. A function gen-
erator was connected to one of the electrodes to drive
the pendulum capacitively. The resulting motion of the
pendulum induced a small AC voltage in the second elec-
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FIG. 1. (Color online) (a) A schematic for the torsion pendu-
lum setup.
(b) A cross section of the torsion pendulum head. The cell in
which the aerogel was grown and compressed is shown with
its dimensions. Indicated are also the regions of bulk fluid in
the cell. Note that the gap between the cell and the epoxy
cast around the cell’s periphery is greatly exaggerated.

trode, which was amplified and sensed by a dual phase
lock-in amplifier.

The pendulum can be excited at two torsion resonance
modes: a symmetric mode in which the wings and the
head of the pendulum move in phase, and an antisym-
metric mode when they move out of phase. The latter
mode provides greater sensitivity to motion of the fluid
in the head and lower noise and was thus selected for this
experiment.

The 98% open silica aerogel was grown directly into a
pillbox shaped stainless steel cavity consisting of a tightly
fitted lid, a base and a shim inserted between them. More
information about the physical properties and method of
growth of aerogel can be found in Ref. 30.

The aerogel was compressed by 10% along its main axis
by removing the shim and pressing the lid onto the base,
bringing the height of the cell to 400 µm. The height
was chosen to be small enough to couple the aerogel well
to the walls (though aerogel displacement relative to the
walls of the cell still needs to be considered), but large
enough to ensure fine resolution in determining the frac-
tion of superfluid. The moment of inertia of the torsion
head and aerogel filled cell is calculated to be 0.064 g-
cm2 and that of the helium at saturated vapor pressure
– 5.85×10−5 g-cm2, or about 1 part in 103 of the inertia
of the head.

The steel cavity was dry fitted into an already hard-
ened epoxy cast in order to reduce possible contamination
of the aerogel by any epoxy penetrating through holes in
the stainless pillbox. Despite careful machining of the
epoxy cast, there appeared to be empty regions around
the periphery of the cell occupied by 3He not embedded
in the aerogel (bulk fluid). In addition, we need to con-
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sider the bulk fluid within the fill line inside the upper
torsion rod in our subsequent analysis. Appendix A de-
scribes how we modeled the contribution coming from
these two regions.

A schematic of the torsion pendulum setup along with
a detailed sketch of the head of the pendulum is shown
at Fig. 1. The locations of the inferred bulk fluid regions
are also indicated.

B. Thermometry and Data Acquisition

Thermometry was provided through a 3He melting
curve thermometer (MCT) which had a ∼ 30 min (depen-
dent on the temperature) time constant with respect to
the 3He in the aerogel. A quartz tuning fork immersed
in the 3He fluid allowed for a more immediate reading
of the temperature of the 3He in the torsion head. The
fork was swept through resonance every ten minutes, and
its frequency and quality factor recorded. These values
were calibrated against the MCT and provide secondary
thermometry for the experiment.

After acquiring the resonance curve at a fixed temper-
ature (T0), we fitted the resonance and established the
quality factor at this temperature Q(T0). We also plotted
the values of the quadrature (Y ) and in-phase (X) com-
ponents of the signal against each other. They formed a
circle with a diameter equal to the signal amplitude at
resonance (A), centered at (A/2, 0). Provided that we
drove the pendulum within ±0.1 radian of phase error
with respect to resonance, we could deduce the resonant
frequency and Q of the pendulum using the following
relationships:

fres(T ) = fdrive(T )

(
1 +

Y (T )

2Q(T )X(T )

)
(1)

Q(T ) =
Vdrive(T0)

Vdrive(T )

Q(T0)

A(T0)

X2(T ) + Y 2(T )

2X(T )
(2)

where Q(T0), A(T0) were determined from the sweep. To
avoid driving the pendulum at a level away from its linear
behavior, the driving amplitude was also adjusted when
it deviated more than 3% from its target value. The
amplitude of motion of the pendulum’s wings was of the
order of a few angstroms leading to a peak velocity of
about a few µm/sec. The typical noise in data obtained
in this manner was 2.5 × 10−9 for the inferred resonant
frequency and 2.5× 10−3 for the quality factor.

The additional energy dissipated by the fluid is deter-
mined by subtracting the empty cell value for Q−1(T )
from the values of Q−1(T ) when filled with 3He. The su-
perfluid fraction of the fluid (ρs/ρ (P, T )) can be found
through the relative reduction in the moment of inertia of
the torsion pendulum head as the temperature is lowered
below Tc for the fluid in the aerogel. From knowledge of
the period (p(P, T )=f−1

res(P, T )) of the torsion pendulum
when the fluid is fully locked to it (p0(P )) and the period
when the cell is empty (pempty) we can define the super-

fluid fraction as ρs/ρ (P, T ) = [p0(P )−p(P, T )]/[p0(P )−
pempty].

To map the temperature dependence of the empty cell
values for the period and dissipation, we took points at
discrete temperatures between 100 mK and 1 mK, wait-
ing for a few hours to reach equilibrium between points,
before any 3He was introduced in the cell. Plots for the
empty cell data can be found in Ref. 31. Both the pen-
dulum’s period and the quality factor change very lit-
tle below 5 mK. We attribute this to the time depen-
dent heat release from the epoxy32. By plotting versus
log (T ), we extrapolate the empty cell data below 5 mK.
We assign the uncertainty for Q−1 in the empty cell to
be ∼ 1×10−6. The relative uncertainty in the empty cell
period below 5 mK is also estimated to be ∼ 1 × 10−6,
or 1 part in 1000 of (p0 − pempty).

Near Tc the viscosity of bulk normal 3He ensures that
even at high pressures, the 3He is well locked to any cavi-
ties smaller in size than∼ 100µm at kilohertz frequencies.
Thus the period of the pendulum at Tc would be p0(P )
apart from a correction due to the fluid in the fill line,
which can be accurately calculated (see Appendix A).

III. DATA

A. Normal State

Figure 2 summarizes the data for the energy dissipa-
tion factor due to 3He fluid versus temperature in the
normal state at four widely spaced pressures: 0.14, 2.6,
15.7 and 25.7 bar. In each of these measurements, we
changed the temperature in discrete steps and waited
until the signal for the frequency and Q of the pendulum
reached equilibrium. The wait time varied with temper-
ature and was of order two hours or less. The calculated
dissipation from the bulk fluid regions is shown as solid
and broken lines. Subtracting this contribution from the
data taken in the normal state, we observe a residual dis-
sipation of ∼ (2.4± 0.6)× 10−6 that we attribute to the
3He liquid in the aerogel. The uncertainty arises mainly
from the need to infer the geometries of the bulk fluid
regions. It is important to note that the dissipation does
not have an obvious temperature dependence and any
pressure dependence cannot be discerned from the plot
in Fig. 2.

B. Superfluid State of 3He in Aerogel

Data was taken on both cooling and warming in the
superfluid state at a number of different pressures, main-
taining a constant cooling (warming) rate (∼ 30 µK/hr).
From knowledge of the bulk superfluid fraction and vis-
cosity, we subtracted contributions due to the bulk re-
gions in order to determine the corresponding values for
the 3He in the aerogel. In particular, we note that bulk
fluid Q−1 is at most ∼ 4 × 10−6 near Tc and rapidly
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FIG. 2. (Color online) Experimental data for Q−1 vs temperature for four pressures after empty cell data is subtracted (open
(blue) circles). Shown also are the fits for the bulk fluid contribution to the Q−1 for two components - bulk fluid contained
in the fill line (solid (black) line) and the bulk fluid around the periphery of the cell, modeled as a channel of thickness 28
µm (dashed (red) line). After subtracting off the two bulk fluid contributions, the dissipation due to the 3He and aerogel
combination is shown as the open (black) triangles. The dissipation of ∼ 2.4 × 10−6 is essentially temperature and pressure
independent within the scatter in the normal state data (∼ ±0.6× 10−6).

decreases at lower temperatures, and is thus unable to
account for the measured dissipation. A summary of the
data for Q−1 vs (ρs/ρ)aerogel at six different pressures is
shown in Fig. 3.

Standing wave modes of the fourth-sound like “slow
mode” (in which the superfluid moves out of phase with
the normal fluid; normal fluid is clamped to the non-rigid
aerogel) cross the torsional oscillator frequency, as the
slow mode’s velocity evolves, between 0 ≤ (ρs/ρ)aerogel
≤ 0.015. We can identify the resonance crossings in Fig.
3 as a number of closely spaced “loops.” These resonance
effects33–37 will be ignored in our subsequent discussions.

The superfluid transition temperatures and precise
phase diagram for this sample were identified in our pre-
vious publication.23 Below the superfluid transition, we
enter the superfluid ESP-phase on cooling. At lower tem-
peratures we observe a continuous phase transition be-
tween the ESP and the B phase (extended over a temper-
ature interval of ∼ 70µK). It is thought that this width
is due to the strong pinning of the phase interface by
the aerogel. On warming we stay in the B-phase until
just below the critical temperature. The reappearance of
the ESP phase is very pressure dependent. This strongly
hysteretic behavior allows us to probe ESP and B phase
properties over an extended temperature window, espe-
cially at elevated pressures.

The pressure dependence of Q−1 against (ρs/ρ)aerogel
and (1 − T/Tc) is shown in Fig. 4. In the B phase, we
observe a broad peak in the dissipation (Fig. 4(a)). Be-
low Tc the dissipation rises, even though the impurity
limited normal fluid viscosity should be constant. The
dissipation in the ESP phase rises even faster than in
the B phase (Fig. 4(b)). This is in sharp contrast with

experiments in the bulk, where the viscosity is seen to
drop sharply below Tc and scale as e−∆/kBT in the fi-
nite size regime.38 Q−1(T ) scales well with ρs/ρ and not
(1 − T/Tc), as shown in Fig. 4(a and c). Since ρs/ρ ∝
∆2, this implies that Q−1 and the energy gap ∆ are re-
lated. The anomalous dissipation of the ESP phase scales
almost linearly with ρs/ρ (Fig. 4(b)), and exceeds the
corresponding value of Q−1 at the same ρs/ρ (and T/Tc)
in the B phase. As pressure is increased, Q−1 measured
in the ESP phase rises considerably above the values for
Q−1 in the B phase. This effect is emphasized further
since the width of temperature region in which the ESP
phase is stable on cooling increases with pressure.

IV. COMPARISON TO EXPERIMENTS WITH
UNCOMPRESSED AEROGEL

This paper presents the first systematic study of the
3He dissipation in a well confined geometry. Previ-
ous torsion pendulum experiments with uncompressed
aerogel11,39 used significantly larger aerogel samples and
had much lower Q-s. Thus, no direct comparison with
previous torsion pendulum experiments can be made.
However, we can relate the Q−1 reported here (in the
superfluid state) to the Q of the slow mode of 3He in
uncompressed aerogel samples in the ESP (Ref. 40) and
the B phases (Ref. 41). Results for the B-phase ultra-
sound dissipation can also be found in Ref. 55. The
qualitative behaviors described in these references (in-
creased ESP and B phase dissipation as the temperature
is lowered near Tc, Q

−1
ESP > Q−1

B ) are similar to what
we observe. Thus apart from allowing the ESP state to
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FIG. 3. (Color online) Data for Q−1 vs ρs/ρ at six different pressures is plotted. We note slow mode resonance crossings for
ρs/ρ < 0.015. ESP-phase (cooling-blue solid circles) and B-phase (warming-red open triangles) coexistence regions are shown
in the insets at lower pressures. The dissipation is larger in the ESP-phase compared to the B-phase. The higher dissipation
associated with the ESP-phase is especially evident at higher pressures and close to the ESP to B transition. Bulk fluid
contributions have been subtracted, assuming bulk B phase. The discontinuity in the 31.9 bar data on cooling is due to the
bulk A to B transition.

persist on cooling to much lower temperatures, the aero-
gel compression is probably not a significant factor in the
observed results.

V. COLLISION DRAG MODEL IN A TORSION
PENDULUM GEOMETRY

A starting point in the model for the dynamics of the
helium-aerogel system is to map out the angular velocity
profiles of the fluid and the aerogel across the flow chan-
nel. We expect the fluid to be in a Drude flow regime,10,17

where the angular velocity of the fluid with respect to the
aerogel is constant across the channel, with the exception
of a small region of size δd =

√
(ητf/ρ) away from the

edges.17,41 The frictional relaxation time τf is related to
the friction force per unit volume coupling the helium

with the aerogel matrix:42–44

F(vl,va) =
ρ

τf
(vl − va) (3)

where vl and va are respectively the velocities of the nor-
mal 3He and the aerogel. The frictional force can be re-
lated to the average change of momentum a quasiparticle
experiences upon scattering from an aerogel impurity.

In Ref. 44, τf is given by:

τf =
τ̃

(1− ρ0s
ρ )(1 +

F 1
s

3 (1− ρ0s
ρ ))

(4)

with F 1
s being a Landau parameter. The bare superfluid

density, ρ0
s is related to the measured superfluid density

stripped of Fermi-liquid effects through:

1− ρs
ρ

=
m∗

m

1− ρ0s
ρ

1 + F 1
s (1− ρ0s

ρ )
(5)
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FIG. 4. (Color online) (a) A plot of Q−1 in the B-phase vs ρs/ρ for all the data sets in Fig. 3 combined in one plot. We note
the consistent pressure dependence of Q−1 with ρs/ρ. Strong coupling effects enhance the anomalous superfluid dissipation.
(b) A plot of Q−1 in the ESP-phase vs ρs/ρ for all the data. The pressure dependence of Q−1 is seen to arise mainly due to
the larger extent in temperature of the ESP phase at high pressure; the Q−1 scales well with ρs/ρ. Discontinuities in the data
are due to the bulk A → B transition on cooling.
(c) and (d) Plots of Q−1 vs 1− T/T aerogel

c in the B-phase and ESP-phase respectively. Much of the scaling behavior is lost in
this view compared to that seen in (a) and (b).

In the normal state, τ̃ is the transport relaxation time
equal to the quasiparticle mean free path divided by the
Fermi velocity.45 In the superfluid state, however, τ̃ is
temperature dependent. Ref. 44 defines τ̃ in terms of in-
tegrals of quasi-classical Keldysh Green’s functions, but
no direct relationship between τ̃ and conventional ex-
perimental observables in the superfluid state is shown.
Instead, the values for τ̃ are numerically calculated in the
different scattering limits for various degrees of Tc sup-
pression by the aerogel. It is evident from the plots for
τ̃(T ) given in in Ref. 44 that τ̃ in the superfluid state
could be somewhat larger that τ̃ in the normal state,
before τ̃(T ) eventually approaches zero as T → 0.

The quasiparticle mean free path can be estimated
from the suppression of the superfluid transition as dis-
cussed in Ref. 23 using a model proposed by Abrikosov
and Gorkov in Ref. 46 and refined into the Isotropic In-
homogeneous Scattering Model (IISM) described in Ref.
7 and Ref. 47–49. Assuming a Fermi velocity of 30
m/s, the value of the normal state τf inferred from the
155 nm mean free path used to fit the Tc suppression is
≈ 5× 10−9s.

The sound velocity in the aerogel sample is expected
to be in the range of c ∼ 30−50 m/s.33,50 For a frequency
of 2.1 kHz we expect a compressional sound mode wave-
length of a few millimeters, an order of magnitude larger
than the height of the cell. Yet, there will be a small
displacement of the aerogel in the interior of the cell rel-
ative to the motion of the adjacent wall. The normal he-
lium is well locked to the aerogel; the aerogel and helium

form a composite medium exhibiting a velocity profile
largely determined by the viscoelasticity of the aerogel.
Through numerical calculations, we predict a ∼1% dif-
ference in the angular velocity in the middle of the cell
and the wall. This angular velocity profile gives rise to
dissipation in the cell. In addition, there is a small veloc-
ity difference between the entrained fluid and the aerogel
itself that arises due to the finite value of τf .

To solve for the angular velocity profiles of the helium
and the aerogel, we write the Navier-Stokes and wave
equations, coupled by the collision drag force:

ρΩ̇l = η
∂2Ωl
∂z2

− ρ

τf
(Ωl − Ωa) (6)

ρaΩ̇a = i
µ

ω

∂2Ωa
∂z2

+
ρ

τf
(Ωl − Ωa) (7)

where Ωl(z) and Ωa(z) are the angular velocity profiles
of the helium liquid and the aerogel across the channel.
The shear modulus of the aerogel is µ, which we can
deduce from the aerogel sound velocity. The viscosity
of the helium η equal to that of the bulk liquid at high
temperatures, but reaches an impurity limited value at
about 10 mK, leading to η . 0.01 Poise.

Having solved for the angular velocity profiles, we find
the induced torque on the walls of the cell due to the
motion of the helium liquid (Nl) and the aerogel (Na).
With the assumption that the angular velocities of the
liquid and the aerogel at the walls are equal to the angular



7

velocity of the cell wall, i.e. Ωl(a)(±z/2) = θ̇, we obtain:

Nl = −πR4η

(
∂Ωl
∂z

)
z=h/2

, Na = −iπR4 µ

ω

(
∂Ωa
∂z

)
z=h/2

The empty cell Q−1 shows a nonzero value when ex-
trapolated to T = 0. Yet, a purely elastic aerogel should
not be dissipative. A previous iteration of this experi-
ment used an aerogel sample (grown in a different pro-
cess) with a height of ≈ 4 mm. The otherwise identi-
cal torsion pendulum containing that sample had a Q
≈ 100× lower than the one described here. We can ex-
pect a h2 dependence of the dissipation, with h being the
height of the cell. Furthermore, there have been a num-
ber of experiments on silica aerogels (though on samples
denser compared to ours and at room temperature51–53),
that report a complex elastic modulus, which would lead
to dissipation effects associated with the plastic deforma-
tions of the aerogel. We write the shear modulus of the
aerogel as µ = µre − iµim.

Accounting for the complex shear modulus, we obtain:

Q−1(T ) = −Re(Na +Nl)

I0ωθ̇

≈ Ia
I0

(
1 +

ρn(T )

ρ

ρ

ρa

)2
ρaω

3h2

12µ2
re

(
η(T ) +

µim
ω

)
+
ρn(T )

ρ

Il
I0
ωτf (8)

More details about the exact solution to the equations
of motion and how we derive the result for Q−1 can be
found in Appendix B.

VI. DISCUSSION

There are three terms in Eq. 8 that contribute to the
normal state dissipation. The first one is proportional to
the normal fluid viscosity η(T ), and is due to the aerogel
flexure modifying the angular velocity profile of the liquid
and causing extra dissipation. Using η ∼ 0.01 Poise, this
term accounts for a contribution to Q−1 of the order
of ∼ 10−8. In order to match the experimental value
of Q−1 = 2.4 × 10−6, we need η to be two orders of
magnitude larger, which we consider unphysical.

The third term in Eq. 8 contains contributions to Q−1

arising from the frictional relaxation time τf . For this
term to have a large enough contribution to match the
experimental data for Q−1, we need τf ∼ 10−7 s. How-
ever, the quasiparticle mean free path in a 98% open
aerogel has been shown to be . 200 nm.13,15,21–23,54 As-
suming a Fermi velocity of 30 m/s and effective mass
m∗/m ∼ 3− 5, we find that τf above Tc can at most be
a few nanoseconds.

We suggest that the large temperature independent
normal state dissipation could be due to the intrinsic
dissipative nature of the aerogel, characterized by the
ratio µim/µ

2
re. The reason we are sensitive to the aerogel

FIG. 5. (Color online) A plot of Q−1 measured at Tc for 0.14,
3, 15.2, 18.5, 20.1, 21.9, 24.3, 25.7, 27.5 and 29.1 bar (pressure
increases as we go from left to right) with the bulk fluid and
empty cell dissipation subtracted versus (1+ρs/ρaerogel)

2−1.
A linear regression line is shown, with a slope of ∼ 2.4×10−7

and y-intercept of ∼ 3.1× 10−7.

intrinsic dissipation term is the low resonant frequency
of the torsion pendulum. Since this term depends on
µim/ω (Eq.8), its contribution would be less significant
at the higher frequencies employed in ultrasound atten-
uation experiments.17,55 To obtain Q−1 of the order of
10−6, we need µim/µre ∼ 0.1. Such a large loss tangent
could be due to the fractal nature of the aerogel or could
be related to the expected presence of a few monolayers
of solid 3He on the surface of the aerogel strands.

Figure 5 shows the pressure dependent values for
Q−1 at T bulkc with the contributions from bulk fluid
and the empty cell subtracted plotted versus (1 +
ρ(P, T bulkc )/ρa)2 − 1 (see Eq. 8). The transition tem-
perature as a function of pressure is well known as are
the density and the viscosity of the bulk fluid at Tc allow-
ing us to accurately subtract the bulk fluid contributions
and reveal the pressure dependence of Q−1 in the normal
state. If our assumption that the main contribution to
the dissipation in the normal state comes from the lossy
aerogel, we would expect a linear relationship. A linear
fit to the data is shown in Fig. 5, providing an evidence
in support of this model. The y-intercept of ∼ 3.1×10−7

could be due to the uncertainty of the empty cell data.
Assuming that energy dissipation of the torsion pendu-

lum due to the interaction of the normal state excitations

and the aerogel scales as
[
1 +

(
1− ρs

ρ

)
ρ
ρa

]2
, then such

a contribution will decrease as the cell is cooled below Tc
and deeper in the superfluid state. This cannot explain
the dissipation we measure in both the ESP and B phase
superfluid states.

We subtract the normal fluid contribution (using pa-
rameters from the linear fit in Fig. 5) and consider the
residual dissipation. If we allow its origin to be due to the
ρn(T )
ρ

Il
I0
ωτf (T ) term, we can plot the so-inferred τf (T ) as

a function of the temperature. Fig. 6 shows this for the
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FIG. 6. (Color online) A plot for τf as a function of tempera-
ture assuming that the τf term in Eq. 8 is responsible for all
of the extra dissipation we observe in the B phase. The data
plotted is for 29.1 bar. We also show the data from Ref. 41,
which is deduced in a similar way.

29.1 bar data along with the data from Ref. 41. We find
good agreement between the two experiments, implying
that the observed dissipation in the 50 kHz sound atten-
uation experiment and the torsion pendulum Q−1 in the
superfluid B phase probably have a similar origin. As
discussed in the previous section, the relaxation time τ̃
in Eq. 4 can be shown to increase as we enter the super-
fluid state due to the rapid opening of the superfluid gap,
before τ̃ eventually diminishes to near zero at extremely
low temperatures.44 In addition, the denominator in Eq.
4 should also decrease as ρs/ρ grows. These two effects
combined could produce a temperature dependence of τf
with a similar shape to what we observe in Fig. 6. We
can expect an enhancement of τf in the superfluid state
up to a factor of ten compared to its value at Tc. How-
ever, in order to produce a peak τf of order 0.15 µs, we
need τf (Tc) & 10 ns, a value which is higher than the few
nanoseconds that would be consistent with the Tc sup-
pression measurements. Thus temperature variation of
the frictional relaxation time cannot solely produce the
observed data. Therefore, we conclude that there is an
additional mechanism to dissipate energy not captured
in the collision-drag model presented in Section IV and
related to the emergence of the superfluid order.

One way superfluid currents can dissipate energy is
through interactions with bound states pinned to the
boundary with the normal fluid at the vortex cores.56

This leads to a mutual friction term which can be shown
to be proportional to57

ρs
ρ

ρn
ρ

(vs − vn)

Such a term would produce a peak in the dissipation
similar to what we observe in our data for the B super-
fluid phase. However, no evidence for vortex states has
been found in our experiment. The velocity amplitude
of the superfluid current is small, much smaller than the

velocities the fluid is driven at in typical experiments ob-
serving vorticity.57,58 We also do not detect a noticeable
increase in Q−1 as we drive the pendulum harder. While
the vortex dynamics model may not be applicable to our
experiment, one can imagine that regions of normal fluid
with the size of a typical vortex core (coherence length)
exist, bound to denser regions of the aerogel. Such bound
states will allow for lower energy excitations to interact
with the superfluid flow and provide a mechanism for
energy dissipation.

An object (in this case an aerogel strand) moving
through bulk superfluid with velocity v should feel a force
that scales as e−∆/kbT v, as shown in Ref. 59. Assuming
that the nodes of the ESP state order parameter tend to
orient in the plane of the flow, then we would expect that
the ESP state should be associated with higher dissipa-
tion than the B phase. However, this argument doesn’t
explain the different functional dependence of the dissi-
pation in the ESP phase in terms of ρs/ρ compared to
the dissipation in the B phase.

Experiments with samples of aerogel attached to vi-
brating wire resonators immersed in 3He show that flow
tends orient the ESP state orbital texture along the
flow60. Such an effect is clearly demonstrated for ve-
locities significantly larger than the velocities of the
fluid in our experiment, but alignment of the `-vector
is possibly realized also at lower velocities, albeit with
a smaller magnitude. Changing the direction of the `-
vector will damp the flow due to the orbital viscosity
of the superfluid61,62 and manifests itself as the extra
dissipation of the pendulum observed in the ESP state.
A similar (but smaller) effect has been shown for the
B-phase if the order parameter is slightly anisotropic.63

Further, a previous experiment studying superfluid flow
through a small orifice (18µm diameter) shows large dis-
sipation in the A-phase, linearly increases with velocity
until a critical velocity is attained.64

Finally, we note that the pressure dependence of the
observed dissipation could be related to the degree of
gap suppression in both ESP and B superfluid phases.
Dissipation is higher at high pressures, where the gap
suppression is less severe, and lower at lower pressures
where the superfluid gap tends to be less pronounced
and the density of states at lower energies increases.

VII. CONCLUSION

We presented torsion pendulum Q−1 data for a com-
pressed aerogel sample filled with 3He in both normal
and superfluid states. We developed a model for the
normal fluid dynamics as embedded in the viscoelastic
aerogel. We assert that frictional relaxation time is not
large enough to account for either normal or superfluid
Q−1 data. Instead, we propose that dissipation features
of the data below the superfluid transition originate from
the superfluid state.
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FIG. 7. (Color online) The fraction of fluid decoupled from
the pendulum vs temperature for four pressures after back-
ground subtraction (open circles). Also shown are the fits for
the bulk fluid contribution for two components - Region 1,
fluid in the fill line, a 1 mm diameter, 6 mm long cylinder com-
prising 0.8% of the total fluid moment of inertia (solid (black)
line), and Region 2, fluid at the periphery of the cell, mod-
eled as a cavity of height 28 µm (dashed (red) line) comprising
3.2% of the moment of inertia. The dash-dotted (green) line
shows the sum of the contributions from the two bulk fluid
components.
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Appendix A: Bulk fluid contribution

We expect the normal state helium liquid to be well
locked to the strands of the aerogel. In the normal state
any change in the resonant frequency compared to that
of a cell with a fully locked fluid should originate from
the bulk-like fluid regions of the cell. Figure 7 shows data

FIG. 8. (Color online) Values of viscosity in the normal state
at the four experimental pressures.

for the fraction of the moment of inertia not coupled to
the walls of the cell at the four experimental pressures
that were shown in Fig. 2 (0.14, 2.6, 15.2 and 25.7 bar).
The decoupled fluid fraction and dissipation show tem-
perature dependent behavior characteristic of two dis-
tinct bulk fluid regions (two peaks in the normal state
dissipation data, two “shoulders” in the normal state de-
coupled fraction data).

The effective length and diameter of the fill line in the
torsion rod and the cast epoxy cell are 6 mm and 1 mm.
The bulk fluid column amounts to 0.8% of the inertia of
the fluid in the cell and is designated as bulk fluid Region
1. In order to calculate the contribution to dissipation
and period shift coming from the fluid in the fill line,
we start by calculating the angular velocity profile Ωθ(r)
by using the Navier-Stokes equation in a tall cylindrical
geometry, which leads to

∂2Ω

∂r2
+

3

r

∂Ω

∂r
+
iωρ

η
Ω = 0 (A1)

with Ω(radius of the cylinder) = Ωcell.
Solving for Ω we find the torque exerted by the fluid:

N = 2πR3hη

(
∂Ω

∂r

)
r=R

= β1 + iωβ2 (A2)

where β1 contributes to the damping of the pendulum
and β2 to the moment of inertia. Temperature depen-
dence of these values is determined by the temperature
dependence of the viscosity of the fluid, η(T ).

Near Tc we expect the normal state bulk viscosity to
scale as T−2. Above T > 10mK the viscosity deviates
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from the Fermi liquid T−2 behavior and we use the fol-
lowing relations between the thermal conductivity (κ),
heat capacity (CV ) and the viscosity (η) to calculate
higher temperature values for η:

κ =
1

3
CV v

2
F τκ (A3)

η =
1

5

m∗

m
ρv2
F τη (A4)

CV = m∗π
2kB
~2

(
V

3π2N
)2/3RT (A5)

Assuming that density and molar volume do not change
in the temperature range 1-100 mK, and assuming τη ∝
τκ, we can infer that η ∝ κ. To find the exact values for
the viscosity in the normal state, we use the values for
η(Tc) given in Ref. 65 and Ref. 66, and κ(Tc) in Ref.
67 and divide the two values to find the proportionality
factor. We then multiply κ(T ) from Ref. 67 by this
factor for each of the pressures we are interested and we
find η(T ) up to 100 mK. The values for the viscosity
for the four experimental pressures we used to calculate
bulk fluid contribution in the normal state are shown in
Fig. 8 In the superfluid state, experimental values for
the superfluid fraction are taken from Ref. 68 and for
the viscosity from Ref. 38

Numerically solving Eq. A1, we can calculate the con-
tribution from the bulk fluid in the fill line. This contri-
bution is shown with a solid (black) line in Fig. 2 and 7.
It is evident in Fig. 7 that there is bulk fluid within the
cell we have not yet accounted for.

The steel cavity containing the aerogel was dry fitted
in the epoxy cast to prevent epoxy running in. We believe
this resulted in small pockets of bulk fluid existing around
the periphery of the cell. While we cannot do an exact
calculation for the effects of these regions the same way
as we did for the fluid in the torsion rod, we can still
use the uncoupled moment of inertia data (Fig. 7) to
estimate the contribution to the pendulum’s dissipation.
We assume that the relationship between the real and
the imaginary part of the torque arising from the cell
periphery bulk fluid is the same as that of a uniform
thickness film encompassing all of the cell. For a thin
film of fluid with a thickness h and inertial contribution
Iper, the torque exerted is N = β1 + iωβ2, with:

β1 = ωIper
δ

h

sin(h/δ)− sinh(h/δ)

cos(h/δ) + cosh(h/δ)
(A6)

β2 = Iper
δ

h

sin(h/δ) + sinh(h/δ)

cos(h/δ) + cosh(h/δ)
(A7)

where δ =
√

2η/ρω is the viscous penetration depth of
the fluid. Fitting to the dissipation data in Fig. 2, we
find h = 28 µm and Iper = 0.032If , where If is the mo-
ment of inertia of all the helium in the torsion pendulum
head. These values are consistent with our expectations.
The accuracy to which the epoxy cast and stainless steel
cell are machined is within one-thousand of an inch, i.e.
25 µm, and a film of that thickness around all of the cell
surface amounts to 0.05If . Since the bulk fluid is more
likely coming from a few separate regions around the pe-
riphery, rather than from a continuous film, we would
expect that Iper . 0.05If . We also use these values and
the viscosity of 3He to obtain the fraction of decoupled
fluid from the periphery (Region 2) which we plot as the
dashed (red) line in Fig. 6.

At the lowest experimental pressures (0.14, 2.6 and 4
bar), the liquid in the aerogel does not transition to a su-
perfluid state. At these pressures, the resonance period
shift below Tc originates from the bulk fluid regions. In
addition to the bulk fluid decoupling, we observe fourth
sound resonance crossings effects, which occur at specific
values of the sound velocity and therefore ρs/ρ

bulk. We
obtain a good fit to these data using the model described
in this appendix, which gives an independent confirma-
tion that bulk fluid effects are fully accounted for. More
information about these effects can be found in the sup-
plementary material of Ref. 23.

Appendix B: Dynamics of normal 3He in aerogel

We start by rewriting equations 6 and 7 as:

∂2Ωa
∂z2

+ aaΩa − baΩl = 0 (B1)

∂2Ωl
∂z2

+ alΩl − blΩa = 0 (B2)

where we have defined the coefficients a and b as:

aa = i
ρω

µ
ba = aa

(
1− iωτF

ρa
ρ

)
(B3)

al = − ρ

ητF
bl = al (1− iωτF ) (B4)

Solving the coupled differential equations, we arrive at:

Ωa (z) =

[
D − al−aa

2 − ba
2D

cos(k1z)

cos(k1h/2)
+
D + al−aa

2 + ba

2D

cos(k2z)

cos(k2h/2)

]
θ̇ (B5)

Ωl (z) =

[
D − aa−al

2 − bl
2D

cos(k1z)

cos(k1h/2)
+
D + aa−al

2 + bl

2D

cos(k2z)

cos(k2h/2)

]
θ̇ (B6)
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where D =

√(
al−aa

2

)2
+ blba and k1,2 =

√
al+aa

2 ±D.

To obtain a qualitative picture of the angular veloc-
ity profiles, we can explore the fact that ωτf � 1 and
ηω/µ � 1. The coefficients

(
D ± al−aa

2 ± ba,l
)
/2D and

the values of k1,2 in Eq. B5, B6 are approximated to the
lowest order. This approximation gives us the z depen-
dence of the angular velocity of the aerogel, Ωa(z), and
that of the fluid Ωl(z):

Ωa(z) ≈ θ̇
cos

(√
(ρ+ρa)ω2

µ z

)
cos

(√
(ρ+ρa)ω2

µ
h
2

) (B7)

Ωl(z) ≈ θ̇

 cos

(√
(ρ+ρa)ω2

µ z

)
cos

(√
(ρ+ρa)ω2

µ
h
2

) − iωτf cosh
(
z
δd

)
cosh

(
h

2δd

)

(B8)

where δd =
√
ητf/ρ� h is the “dirty” fluid penetration

depth, i.e. the length scale over which the velocity of the
helium fluid deviates from the Drude flow regime with
respect to the aerogel velocity. We observe that the shape
of both aerogel and fluid velocity profiles is largely set
by the elastic modulus of the aerogel, µ. The relative
velocity difference between the aerogel and the helium
fluid is of the order of ωτf � 1 of the total velocity.

Eq. B7 and B8 present a qualitative picture for the
differences in the velocities of the flow and the aerogel,
but we need to include higher order terms in the expres-
sions above to estimate the dissipation factors associated
with the aerogel and the fluid in the cell. Importantly,
we also allow the possibility of the elastic modulus of the
aerogel to be a complex number, µ = µre − iµim, with
µim/µre � 1. Then for k1,2 we have:

k1 ≈

√
(ρ+ ρa)ω2

µre
×[

1 + i

(
ωη

2µre
+
µim
µre

+
ωτf

2

ρ

(ρ+ ρa)

)]
(B9)

k2 ≈
i

δd

[
1− i

(
ωη

2µre
+
ωτf

2

)]
(B10)

As for the coefficients in B5, B6:

C1 =
D − al−aa

2 − ba
2D

≈ 1 (B11)

C2 =
D + al−aa

2 + ba

2D
≈ (ωτf )

(
ηω

µre

)
(B12)

C3 =
D − aa−al

2 − bl
2D

≈ 1 + iωτf (B13)

C4 =
D + aa−al

2 + bl

2D
≈ −iωτf

(
1 + i

ηω

µre

ρ+ ρa
ρ

)
(B14)

The expressions for the induced torque by the aerogel
(Na) and the helium liquid (Nl) can be written as:

Na = iωIa
2µ

ρaω2h

[
C1k1 tan

(
k1
h

2

)
+ C2k2 tan

(
k2
h

2

)]
θ̇

(B15)

Nl = Il
2η

ρh

[
C3k1 tan

(
k1
h

2

)
+ C4k2 tan

(
k2
h

2

)]
θ̇

(B16)

Further, the expressions for the tangents can be approx-
imated as:

tan

(
k1
h

2

)
≈ k1

h

2
+

(
(ρ+ρa)ω2h

4µre

)3/2

3−
(

(ρ+ρa)ω2h
4µre

)+ (B17)

+ i

(
(ρ+ρa)ω2h

4µre

)3/2

1−
(

(ρ+ρa)ω2h
4µre

) ( ηω
µre

+
µim
µre

ωτf
2

ρ

ρ+ ρa

)

tan

(
k2
h

2

)
≈ i (B18)

where we used the following relation:

tan(α+ iβ) ≈ α
(

1 +
α2

3− 3α2

)
+ iβ

(
α2

1− α2

)
(B19)

which is true in the case of β � α and α . 0.1. For the
expression for tan(k2h/2), we use the fact that |k2h/2| ∼
h/δd � 1 and that Im(k2h/2)� Re(k2h/2).

Putting all of these expressions together, we arrive at:

Nind = Na +Nl ≈ (B20)

−
[
(Ia + Il)ω

ξ

3− ξ

(
ηω

µre
+
µim
µre

)
+ Ilω

2τf
3− ξ
3− 3ξ

]
θ̇

+ iω
3− 2ξ

3− 3ξ
(Ia + Il)θ̇

where ξ = (ρ+ρa)ω2h2

4µre
and we have ignored terms contain-

ing δd/h� 1. We can simplify further, since ξ ∼ 10−2:

Nind ≈

−
[
(Ia + Il)

(ρ+ ρa)ω4h2

12µ2
re

(
η +

µim
ω

)
+ Ilω

2τf

]
θ̇

+ iω(Ia + Il)θ̇ (B21)

Using this expression for the induced torque, we arrive
at the expression for Q−1 in Eq. 8
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