We present data for energy dissipation factor (Q^{-1}) over a broad
temperature range at various pressures of a torsion pendulum setup used to
study 3He confined in a 98% open silica aerogel. Values for Q^{-1} above T_c
are temperature independent and have a weak pressure dependence. Below T_c, a
deliberate axial compression of the aerogel by 10% widens the range of
metastability for a superfluid Equal Spin Pairing (ESP) state; we observe this
ESP phase on cooling and the B phase on warming over an extended temperature
region. While the dissipation for the B phase tends to zero as T goes to 0,
Q^{-1} exhibits a peak value greater than that at T_c at intermediate
temperatures. Values for Q^{-1} in the ESP phase are consistently higher than
in the B phase and are proportional to \rho_s/\rho until the ESP to B phase
transition is attained. We apply a viscoelastic collision-drag model, which
couples the motion of the helium and the aerogel through a frictional
relaxation time \tau_f. Our dissipation data is not sensitive to the damping
due to the presumed small but non-zero value of \tau_f. The result is that an
additional mechanism to dissipate energy not captured in the collision-drag
model and related to the emergence of the superfluid order must exist. The
extra dissipation below T_c is possibly associated with mutual friction between
the superfluid phases and the clamped normal fluid. The pressure dependence of
the measured dissipation in both superfluid phases is likely related to the
pressure dependence of the gap structure of the "dirty" superfluid. The large
dissipation in the ESP state is consistent with the phase being the A or the
Polar with the order parameter nodes oriented in the plane of the cell and
perpendicular to the aerogel anisotropy axis.Comment: 12 pages, 7 figure