7,529 research outputs found

    Using philosophy to improve the coherence and interoperability of applications ontologies: A field report on the collaboration of IFOMIS and L&C

    Get PDF
    The collaboration of Language and Computing nv (L&C) and the Institute for Formal Ontology and Medical Information Science (IFOMIS) is guided by the hypothesis that quality constraints on ontologies for software ap-plication purposes closely parallel the constraints salient to the design of sound philosophical theories. The extent of this parallel has been poorly appreciated in the informatics community, and it turns out that importing the benefits of phi-losophical insight and methodology into application domains yields a variety of improvements. L&C’s LinKBase® is one of the world’s largest medical domain ontologies. Its current primary use pertains to natural language processing ap-plications, but it also supports intelligent navigation through a range of struc-tured medical and bioinformatics information resources, such as SNOMED-CT, Swiss-Prot, and the Gene Ontology (GO). In this report we discuss how and why philosophical methods improve both the internal coherence of LinKBase®, and its capacity to serve as a translation hub, improving the interoperability of the ontologies through which it navigates

    Aplicaciones en Economía del Aprendizaje Automático

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, leída el 06-05-2022This Thesis examines problems in economics from a Machine Learning perspective. Emphasisis given on the interpretability of Machine Learning algorithms as opposed to blackbox predictions models. Chapter 1 provides an overview of the terminology and Machine Learning methods used throughout this Thesis. This chapter aims to build a roadmap from simple decision tree models to more advanced ensemble boosted algorithms. Other Machine Learning models are also explained. A discussion of the advances in Machine Learning in economics is also provided along with some of the pitfalls that Machine Learning faces. Moreover, an example of how Shapley values from coalition game theory are used to help infer inference from the Machine Learning models' predictions. Chapter 2 analyses the problem of bankruptcy prediction in the Spanish economy and how Machine Learning, not only provides more predictive accuracy, but can also provide adierent interpretation of the results that traditional econometric models cannot. Several financial ratios are constructed and passed to a series of Machine Learning algorithms. Case studies are provided which may aid in better decision-making from financial institutions. A section containing supplementary material based on further analysis is also provided...Este Tesis examina problemas en economía desde la perspectiva de Aprendizaje Mecánico. Se hace hincapié en la interpretabilidad de los algoritmos de Aprendizaje Mecánico en lugar de modelos de predicción de black-box. Capítulo 1 Proporciona el resumen de la terminología y los métodos de Aprendizaje Mecánico utilizados a lo largo de esta tesis. El objetivo de este capítulo es construir la trayectoria desde un simple árbol de decisión hasta algoritmos impulsados por conjuntos más avanzados. También se explican otros modelos de Machine Learning. Asimismo, se proporciona una discusión de los avances en el Aprendizaje Mecánico en economía junto con algunos de los escollos que enfrenta el aprendizaje automático. Además, un ejemplo sobre cómo se utilizan los valores de Shapley de coalición de teoría de juegos y muestran cómo se puede tomar inferencia de los modelos de predicción. Capítulo 2 Analiza el problema de la predicción de quiebra en la economía española y cómo Aprendizaje Mecánico, no sólo proporciona una mayor precisión predictiva, sino que también puede proporcionar una interpretación diferente de los resultados en la que los modelos econométricos tradicionales no pueden. Se construyen una serie de ratios financieros y se pasan a una serie de algoritmos de Aprendizaje Mecánico. Se proporcionan estudios de casos que pueden ayudar a mejorar la toma de decisiones por parte de las instituciones financieras. También se proporciona una sección que contiene material complementario basado en un análisis más detallado...Fac. de Ciencias Económicas y EmpresarialesTRUEunpu

    Music Among Friends

    Full text link
    Program listing performers and works performe

    False discovery rate regression: an application to neural synchrony detection in primary visual cortex

    Full text link
    Many approaches for multiple testing begin with the assumption that all tests in a given study should be combined into a global false-discovery-rate analysis. But this may be inappropriate for many of today's large-scale screening problems, where auxiliary information about each test is often available, and where a combined analysis can lead to poorly calibrated error rates within different subsets of the experiment. To address this issue, we introduce an approach called false-discovery-rate regression that directly uses this auxiliary information to inform the outcome of each test. The method can be motivated by a two-groups model in which covariates are allowed to influence the local false discovery rate, or equivalently, the posterior probability that a given observation is a signal. This poses many subtle issues at the interface between inference and computation, and we investigate several variations of the overall approach. Simulation evidence suggests that: (1) when covariate effects are present, FDR regression improves power for a fixed false-discovery rate; and (2) when covariate effects are absent, the method is robust, in the sense that it does not lead to inflated error rates. We apply the method to neural recordings from primary visual cortex. The goal is to detect pairs of neurons that exhibit fine-time-scale interactions, in the sense that they fire together more often than expected due to chance. Our method detects roughly 50% more synchronous pairs versus a standard FDR-controlling analysis. The companion R package FDRreg implements all methods described in the paper

    A PC-based multispectral scanner data evaluation workstation: Application to Daedalus scanners

    Get PDF
    In late 1989, a personal computer (PC)-based data evaluation workstation was developed to support post flight processing of Multispectral Atmospheric Mapping Sensor (MAMS) data. The MAMS Quick View System (QVS) is an image analysis and display system designed to provide the capability to evaluate Daedalus scanner data immediately after an aircraft flight. Even in its original form, the QVS offered the portability of a personal computer with the advanced analysis and display features of a mainframe image analysis system. It was recognized, however, that the original QVS had its limitations, both in speed and processing of MAMS data. Recent efforts are presented that focus on overcoming earlier limitations and adapting the system to a new data tape structure. In doing so, the enhanced Quick View System (QVS2) will accommodate data from any of the four spectrometers used with the Daedalus scanner on the NASA ER2 platform. The QVS2 is designed around the AST 486/33 MHz CPU personal computer and comes with 10 EISA expansion slots, keyboard, and 4.0 mbytes of memory. Specialized PC-McIDAS software provides the main image analysis and display capability for the system. Image analysis and display of the digital scanner data is accomplished with PC-McIDAS software

    Understanding the experiences of engaging in a community-based, physical-activity focused secondary stroke prevention program

    Get PDF
    Research has evidenced that regular exercise can provide physical and physiological benefits for people living with stroke. Our study aims to explore the experiences of people living with stroke when participating in a community physical activity programme. This programme was created to offer targeted physical activity and education interventions following the discharge of patients from the healthcare pathway. This qualitative study involved semi-structured interviews with 16 participants living with stroke who were recruited from individuals who had engaged with the activity programme. A reflexive thematic analysis was conducted on the data, and four overarching themes were developed: (i) Feelings of appreciation, (ii) Interactions with other patients, (iii) Positive contributions of trained instructors, and iv) Personal progress. Generally, participants reported very positive perceptions of the exercise programme, and were very grateful for the opportunity that the exercise classes provided. We hope that these findings will offer practical suggestions for healthcare providers who might develop similar activity programmes for clinical populations

    BacillOndex: An Integrated Data Resource for Systems and Synthetic Biology

    Get PDF
    BacillOndex is an extension of the Ondex data integration system, providing a semantically annotated, integrated knowledge base for the model Gram-positive bacterium Bacillus subtilis. This application allows a user to mine a variety of B. subtilis data sources, and analyse the resulting integrated dataset, which contains data about genes, gene products and their interactions. The data can be analysed either manually, by browsing using Ondex, or computationally via a Web services interface. We describe the process of creating a BacillOndex instance, and describe the use of the system for the analysis of single nucleotide polymorphisms in B. subtilis Marburg. The Marburg strain is the progenitor of the widely-used laboratory strain B. subtilis 168. We identified 27 SNPs with predictable phenotypic effects, including genetic traits for known phenotypes. We conclude that BacillOndex is a valuable tool for the systems-level investigation of, and hypothesis generation about, this important biotechnology workhorse. Such understanding contributes to our ability to construct synthetic genetic circuits in this organism
    corecore