336 research outputs found
The effect of gap size on growth and species composition of 15-year-old regrowth in mixed blackbutt forests
In north-eastern New South Wales (NSW) the Regional Forest Agreement process has transferred more than 400 000 ha of state forests to national park, and restricted silviculture to 'single tree selection' and a light form of 'Australian group selection'. While these silvicultural systems are theoretically well suited to ecologically sustainable forest management, there is concern that in their current form they are not achieving adequate regeneration or optimising the growth of that regeneration. This is of particular concern for mixed-species blackbutt forest, for which there is no quantitative research concerning the growth and composition of regeneration within group - selection gaps. We address this issue by: (1) quantifying the effect of gap size, and other gap characteristics including distance from gap edge, on the growth of regeneration; and (2) assessing the effect of gap size on the composition of regeneration. We use the answers to these questions to recommend a gap size for group selection silviculture in mixed-species blackbutt forests in north-eastern NSW. We measured attributes describing the growth and composition of regeneration in nine circular group-selection gaps in mixedspecies blackbutt forest near Coffs Harbour and Wauchope. These gaps contained 14.5-15.5-y-old regeneration and provided three replicates of small (0.27-0.3 ha), medium (0.45-0.67 ha) and large (0.93-0.97 ha) gaps. ANOVA testing indicated significantly (P < 0.05) lower height, diameter and volume growth of dominant blackbutt stems up to five metres from gap edge. Outside this zone growth remained fairly constant, indicating dominant blackbutt trees were susceptible to suppression only in close proximity to gap edges. Multiple regression analysis confirmed the relatively short distance from gap edges over which suppression occurred, with distance to closest gap edge explaining a small proportion of the variation in the models fitted for tree- and plot-level growth. The origin of blackbutt regeneration within gaps was a significant effect in tree-level growth models, with planted stems having increased diameter and volume growth compared with stems regenerated from natural seedfall. Gap size had no significant effect on the composition of regeneration. We conclude that for the range of gaps tested, 1 -ha gaps are optimal for growth because they minimise the proportion of gap within 5 m of the retained forest edge, without altering composition. Larger gaps have also been shown to have operational and economic benefits compared with smaller gaps
Modelling growth, recruitment and mortality to describe and simulate dynamics of subtropical rainforests following different levels of disturbance
The capacity of rainforests to recover from logging disturbance is difficult to model due to the compounding interactions between long-term disturbance effects, natural dynamics, site characteristics and tree species regeneration strategies. The aim of this study was to develop a quantitative model using over three decades of data from stands subjected to various levels of disturbance ranging from natural, through increasing intensities of tree removal to intensive logging. Data for trees >10 cm diameter at 1.3 m above the ground (dbh) in subtropical rainforest of north-east New South Wales, Australia were used. Botanical identity of trees at species level, species-specific shade tolerance and size at maturity were used to classify 117 species into five groups. These groups include the emergent and shade tolerant main canopy species, shade tolerant mid canopy species, shade tolerant understorey species, moderate shade tolerant species, and shade intolerant tree species. Multilevel nonlinear regression was used to estimate growth, recruitment and mortality parameters, based on the assumption of variations in tree species performance at both the plot and tree levels. The species group, tree size and competition from larger trees accounted for most variation at the tree level. Significant stand level variables included topography (elevation, slope and aspect), stand basal area, and time since the disturbance. The final model is a classical matrix management-oriented model with an ecological basis and maximum size-dependent parameters of ingrowth and outgrowth. The model provides a tool to simulate stand performance after logging and to assess silvicultural prescriptions before they are applied. Simulations with estimated parameters indicate that moderate harvesting (47% overstorey basal area (BA) removal) in a checkerboard of logged and unlogged patches (group selection) on a 120-year cycle could enable sustainable timber production without compromising the ecological integrity in these rainforests. This is due to reduced logging damage in group selection, which also released retained stems and facilitated recruitment of both shade tolerant and intolerant trees. Single-tree selection (35% BA removal) created small canopy gaps that resulted in low recruitment, a slight increase in the growth of retained stems and recovery time of 150 years. Intensive single-tree selection (50% BA removal) resulted in high logging damage that increased recovery time to 180 years. Intensive logging (65-80% BA removal) decreased the stem density and created larger canopy gaps allowing for high growth rates and recruitment of both shade tolerant and intolerant trees. However, few retained stems and high mortality of recruits, increased the recovery time to 180-220 years. Pre-harvest climber cutting coupled with poisoning of nontimber species followed by logging could allow harvesting on a 300-year cycle. Shorter logging cycles may lead to changes in species composition as well as in the forest structure
3D NON-INVASIVE INSPECTION OF THE SKIN LESIONS BY CLOSE-RANGE AND LOW-COST PHOTOGRAMMETRIC TECHNIQUES
In dermatology, one of the most common causes of skin abnormality is an unusual change in skin lesion structure which may exhibit very subtle physical deformation of its 3D shape. However the geometrical sensitivity of current cost-effective inspection and measurement methods may not be sufficient to detect such small progressive changes in skin lesion structure at micro-scale. Our proposed method could provide a low-cost, non-invasive solution by a compact system solution to overcome these shortcomings by using close-range photogrammetric imaging techniques to build a 3D surface model for a continuous observation of subtle changes in skin lesions and other features
Maximising HIV prevention by balancing the opportunities of today with the promises of tomorrow: a modelling study
SummaryBackgroundMany ways of preventing HIV infection have been proposed and more are being developed. We sought to construct a strategic approach to HIV prevention that would use limited resources to achieve the greatest possible prevention impact through the use of interventions available today and in the coming years.MethodsWe developed a deterministic compartmental model of heterosexual HIV transmission in South Africa and formed assumptions about the costs and effects of a range of interventions, encompassing the further scale-up of existing interventions (promoting condom use, male circumcision, early antiretroviral therapy [ART] initiation for all [including increased HIV testing and counselling activities], and oral pre-exposure prophylaxis [PrEP]), the introduction of new interventions in the medium term (offering intravaginal rings, long-acting injectable antiretroviral drugs) and long term (vaccine, broadly neutralising antibodies [bNAbs]). We examined how available resources could be allocated across these interventions to achieve maximum impact, and assessed how this would be affected by the failure of the interventions to be developed or scaled up.FindingsIf all interventions are available, the optimum mix would place great emphasis on the following: scale-up of male circumcision and early ART initiation with outreach testing, as these are available immediately and assumed to be low cost and highly efficacious; intravaginal rings targeted to sex workers; and vaccines, as these can achieve a large effect if scaled up even if imperfectly efficacious. The optimum mix would rely less on longer term developments, such as long-acting antiretroviral drugs and bNAbs, unless the costs of these reduced. However, if impossible to scale up existing interventions to the extent assumed, emphasis on oral PrEP, intravaginal rings, and long-acting antiretroviral drugs would increase. The long-term effect on the epidemic is most affected by scale-up of existing interventions and the successful development of a vaccine.InterpretationWith current information, a strategic approach in which limited resources are used to maximise prevention impact would focus on strengthening the scale-up of existing interventions, while pursuing a workable vaccine and developing other approaches that can be used if further scale-up of existing interventions is limited.FundingBill & Melinda Gates Foundation
Vulnerability to bullying in children with a history of specific speech and language difficulties
This is an electronic version of an article published in Lindsay, Geoff and Dockrell, Julie and Mackie, Clare (2008) Vulnerability to bullying in children with a history of specific speech and language difficulties. European Journal of Special Needs Education, 23 (1). pp. 1-16. European Journal of Special Needs Education is available online at: http://www.informaworld.com/10.1080/0885625070179120
Augmenting forearm crutches with wireless sensors for lower limb rehabilitation
Forearm crutches are frequently used in the rehabilitation of an injury to the lower limb. The recovery rate is improved if the patient correctly applies a certain fraction of their body weight (specified by a clinician) through the axis of the crutch, referred to as partial weight bearing (PWB). Incorrect weight bearing has been shown to result in an extended recovery period or even cause further damage to the limb. There is currently no minimally invasive tool for long-term monitoring of a patient's PWB in a home environment. This paper describes the research and development of an instrumented forearm crutch that has been developed to wirelessly and autonomously monitor a patient's weight bearing over the full period of their recovery, including its potential use in a home environment. A pair of standard forearm crutches are augmented with low-cost off-the-shelf wireless sensor nodes and electronic components to provide indicative measurements of the applied weight, crutch tilt and hand position on the grip. Data are wirelessly transmitted between crutches and to a remote computer (where they are processed and visualized in LabVIEW), and the patient receives biofeedback by means of an audible signal when they put too much or too little weight through the crutch. The initial results obtained highlight the capability of the instrumented crutch to support physiotherapists and patients in monitoring usage
Migration Patterns, Use of Stopover Areas, and Austral Summer Movements of Swainson\u27s Hawks
From 1995 to 1998, we tracked movements of adult Swainson’s Hawks (Buteo swainsoni), using satellite telemetry to characterize migration, important stopover areas, and movements in the austral summer. We tagged 46 hawks from July to September on their nesting grounds in seven U.S. states and two Canadian provinces. Swainson’s Hawks followed three basic routes south on a broad front, converged along the east coast of central Mexico, and followed a concentrated corridor to a communal area in central Argentina for the austral summer. North of 20°N, southward and northward tracks differed little for individuals from east of the continental divide but differed greatly (up to 1700 km) for individuals from west of the continental divide. Hawks left the breeding grounds mid-August to mid-October; departure dates did not differ by location, year, or sex. Southbound migration lasted 42 to 98 days, northbound migration 51 to 82 days. Southbound, 36% of the Swainson’s Hawks departed the nesting grounds nearly 3 weeks earlier than the other radio-marked hawks and made stopovers 9.0–26.0 days long in seven separate areas, mainly in the southern Great Plains, southern Arizona and New Mexico, and northcentral Mexico. The birds stayed in their nonbreeding range for 76 to 128 days. All used a core area in central Argentina within 23% of the 738 800-km2 austral summer range, where they frequently moved long distances (up to 1600 km). Conservation of Swainson’s Hawks must be an international effort that considers habitats used during nesting and non-nesting seasons, including migration stopovers
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.
BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 Ă— coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution
South African research in the Southern Ocean: New opportunities but serious challenges
South Africa has a long track record in Southern Ocean and Antarctic research and has recently invested considerable funds in acquiring new infrastructure for ongoing support of this research. This infrastructure includes a new base at Marion Island and a purpose-built ice capable research vessel, which greatly expand research opportunities. Despite this investment, South Africa's standing as a participant in this critical field is threatened by confusion, lack of funding, lack of consultation and lack of transparency. The research endeavour is presently bedevilled by political manoeuvring among groups with divergent interests that too often have little to do with science, while past and present contributors of research are excluded from discussions that aim to formulate research strategy. This state of affairs is detrimental to the country's aims of developing a leadership role in climate change and Antarctic research and squanders both financial and human capital
Sublithospheric diamond ages and the supercontinent cycle.
Subduction related to the ancient supercontinent cycle is poorly constrained by mantle samples. Sublithospheric diamond crystallization records the release of melts from subducting oceanic lithosphere at 300-700 km depths1,2 and is especially suited to tracking the timing and effects of deep mantle processes on supercontinents. Here we show that four isotope systems (Rb-Sr, Sm-Nd, U-Pb and Re-Os) applied to Fe-sulfide and CaSiO3 inclusions within 13 sublithospheric diamonds from JuĂna (Brazil) and Kankan (Guinea) give broadly overlapping crystallization ages from around 450 to 650 million years ago. The intracratonic location of the diamond deposits on Gondwana and the ages, initial isotopic ratios, and trace element content of the inclusions indicate formation from a peri-Gondwanan subduction system. Preservation of these Neoproterozoic-Palaeozoic sublithospheric diamonds beneath Gondwana until its Cretaceous breakup, coupled with majorite geobarometry3,4, suggests that they accreted to and were retained in the lithospheric keel for more than 300 Myr during supercontinent migration. We propose that this process of lithosphere growth-with diamonds attached to the supercontinent keel by the diapiric uprise of depleted buoyant material and pieces of slab crust-could have enhanced supercontinent stability
- …