690 research outputs found

    "Cold turkey" works best for smoking cessation

    Get PDF
    "Cold turkey" works best for smoking cessation. PRACTICE CHANGER: Counsel patients who want to quit smoking that abrupt smoking cessation is more effective for long-term abstinence than taking a gradual approach. STRENGTH OF RECOMMENDATION: B: Based on one well-designed, randomized controlled trial

    Correction : Palladium-scavenging self-assembled hybrid hydrogels - reusable highly-active green catalysts for Suzuki-Miyaura cross-coupling reactions (Chemical Science (2019) DOI: 10.1039/c8sc04561e)

    Get PDF
    In the original article, an error was made in the placement of an oxygen atom in the structure of DBS-CONHNH2 in Fig. 1. The structure should be as shown below:. (Figure Presented). The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers

    Population-average mediation analysis for zero-inflated count outcomes

    Full text link
    Mediation analysis is an increasingly popular statistical method for explaining causal pathways to inform intervention. While methods have increased, there is still a dearth of robust mediation methods for count outcomes with excess zeroes. Current mediation methods addressing this issue are computationally intensive, biased, or challenging to interpret. To overcome these limitations, we propose a new mediation methodology for zero-inflated count outcomes using the marginalized zero-inflated Poisson (MZIP) model and the counterfactual approach to mediation. This novel work gives population-average mediation effects whose variance can be estimated rapidly via delta method. This methodology is extended to cases with exposure-mediator interactions. We apply this novel methodology to explore if diabetes diagnosis can explain BMI differences in healthcare utilization and test model performance via simulations comparing the proposed MZIP method to existing zero-inflated and Poisson methods. We find that our proposed method minimizes bias and computation time compared to alternative approaches while allowing for straight-forward interpretations.Comment: 34 pages, 2 figures, 4 tables, 49 pages of Supplemental material, 2 supplemental figure

    Ligand-Receptor Interactions

    Full text link
    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the interest of biologists to the kinetic and mechanical properties of cell membrane receptors. The aim of this review is to give a description of these advances that benefitted from a largely multidisciplinar approach

    Adaptor SKAP-55 Binds p21ras Activating Exchange Factor RasGRP1 and Negatively Regulates the p21ras-ERK Pathway in T-Cells

    Get PDF
    While the adaptor SKAP-55 mediates LFA-1 adhesion on T-cells, it is not known whether the adaptor regulates other aspects of signaling. SKAP-55 could potentially act as a node to coordinate the modulation of adhesion with downstream signaling. In this regard, the GTPase p21ras and the extracellular signal-regulated kinase (ERK) pathway play central roles in T-cell function. In this study, we report that SKAP-55 has opposing effects on adhesion and the activation of the p21ras -ERK pathway in T-cells. SKAP-55 deficient primary T-cells showed a defect in LFA-1 adhesion concurrent with the hyper-activation of the ERK pathway relative to wild-type cells. RNAi knock down (KD) of SKAP-55 in T-cell lines also showed an increase in p21ras activation, while over-expression of SKAP-55 inhibited activation of ERK and its transcriptional target ELK. Three observations implicated the p21ras activating exchange factor RasGRP1 in the process. Firstly, SKAP-55 bound to RasGRP1 via its C-terminus, while secondly, the loss of binding abrogated SKAP-55 inhibition of ERK and ELK activation. Thirdly, SKAP-55−/− primary T-cells showed an increased presence of RasGRP1 in the trans-Golgi network (TGN) following TCR activation, the site where p21ras becomes activated. Our findings indicate that SKAP-55 has a dual role in regulating p21ras-ERK pathway via RasGRP1, as a possible mechanism to restrict activation during T-cell adhesion

    Bioactive Hydrogel Substrates: Probing Leukocyte Receptor–Ligand Interactions in Parallel Plate Flow Chamber Studies

    Get PDF
    The binding of activated integrins on the surface of leukocytes facilitates the adhesion of leukocytes to vascular endothelium during inflammation. Interactions between selectins and their ligands mediate rolling, and are believed to play an important role in leukocyte adhesion, though the minimal recognition motif required for physiologic interactions is not known. We have developed a novel system using poly(ethylene glycol) (PEG) hydrogels modified with either integrin-binding peptide sequences or the selectin ligand sialyl Lewis X (SLe(X)) within a parallel plate flow chamber to examine the dynamics of leukocyte adhesion to specific ligands. The adhesive peptide sequences arginine–glycine–aspartic acid–serine (RGDS) and leucine–aspartic acid–valine (LDV) as well as sialyl Lewis X were bound to the surface of photopolymerized PEG diacrylate hydrogels. Leukocytes perfused over these gels in a parallel plate flow chamber at physiological shear rates demonstrate both rolling and firm adhesion, depending on the identity and concentration of ligand bound to the hydrogel substrate. This new system provides a unique polymer-based model for the study of interactions between leukocytes and endothelium as well as a platform to develop improved scaffolds for cardiovascular tissue engineering

    Simultaneous Quantitation of Oxidized and Reduced Glutathione via LC-MS/MS: An Insight into the Redox State of Hematopoietic Stem Cells

    Get PDF
    Cellular redox balance plays a significant role in the regulation of hematopoietic stem-progenitor cell (HSC/MPP) self-renewal and differentiation. Unregulated changes in cellular redox homeostasis are associated with the onset of most hematological disorders. However, accurate measurement of the redox state in stem cells is difficult because of the scarcity of HSC/MPPs. Glutathione (GSH) constitutes the most abundant pool of cellular antioxidants. Thus, GSH metabolism may play a critical role in hematological disease onset and progression. A major limitation to studying GSH metabolism in HSC/MPPs has been the inability to measure quantitatively GSH concentrations in small numbers of HSC/MPPs. Current methods used to measure GSH levels not only rely on large numbers of cells, but also rely on the chemical/structural modification or enzymatic recycling of GSH and therefore are likely to measure only total glutathione content accurately. Here, we describe the validation of a sensitive method used for the direct and simultaneous quantitation of both oxidized and reduced GSH via liquid chromatography followed by tandem mass spectrometry (LC-MS/MS) in HSC/MPPs isolated from bone marrow. The lower limit of quantitation (LLOQ) was determined to be 5.0 ng/mL for GSH and 1.0 ng/mL for GSSG with lower limits of detection at 0.5 ng/mL for both glutathione species. Standard addition analysis utilizing mouse bone marrow shows that this method is both sensitive and accurate with reproducible analyte recovery. This method combines a simple extraction with a platform for the high-throughput analysis, allows for efficient determination of GSH/GSSG concentrations within the HSC/MPP populations in mouse, chemotherapeutic treatment conditions within cell culture, and human normal/leukemia patient samples. The data implicate the importance of the modulation of GSH/GSSG redox couple in stem cells related diseases

    Acute Inhibition of Selected Membrane-Proximal Mouse T Cell Receptor Signaling by Mitochondrial Antagonists

    Get PDF
    T cells absorb nanometric membrane vesicles, prepared from plasma membrane of antigen presenting cells, via dual receptor/ligand interactions of T cell receptor (TCR) with cognate peptide/major histocompatibility complex (MHC) plus lymphocyte function-associated antigen 1 (LFA-1) with intercellular adhesion molecule 1. TCR-mediated signaling for LFA-1 activation is also required for the vesicle absorption. Exploiting those findings, we had established a high throughput screening (HTS) platform and screened a library for isolation of small molecules inhibiting the vesicle absorption. Follow-up studies confirmed that treatments (1 hour) with various mitochondrial antagonists, including a class of anti-diabetic drugs (i.e., Metformin and Phenformin), resulted in ubiquitous inhibition of the vesicle absorption without compromising viability of T cells. Further studies revealed that the mitochondrial drug treatments caused impairment of specific membrane-proximal TCR signaling event(s). Thus, activation of Akt and PLC-γ1 and entry of extracellular Ca2+ following TCR stimulation were attenuated while polymerization of monomeric actins upon TCR triggering progressed normally after the treatments. Dynamic F-actin rearrangement concurring with the vesicle absorption was also found to be impaired by the drug treatments, implying that the inhibition by the drug treatments of downstream signaling events (and the vesicle absorption) could result from lack of directional relocation of signaling and cell surface molecules. We also assessed the potential application of mitochondrial antagonists as immune modulators by probing effects of the long-term drug treatments (24 hours) on viability of resting primary T cells and cell cycle progression of antigen-stimulated T cells. This study unveils a novel regulatory mechanism for T cell immunity in response to environmental factors having effects on mitochondrial function
    corecore