161 research outputs found

    Small band gap superlattices as intrinsic long wavelength infrared detector materials

    Get PDF
    Intrinsic long wavelength (lambda greater than or equal to 10 microns) infrared (IR) detectors are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR detector material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices

    Detection of the spin character of Fe(001) surface states by scanning tunneling microscopy: A theoretical proposal

    Full text link
    We consider the magnetic structure on the Fe(001) surface and theoretically study the scanning tunneling spectroscopy using a spin-polarized tip (SP-STM). We show that minority-spin surface states induce a strong bias dependence of the tunneling differential conductance which largely depends on the orientation of the magnetization in the SP-STM tip relative to the easy magnetization axis in the Fe(001) surface. We propose to use this effect in order to determine the spin character of the Fe(001) surface states. This technique can be applied also to other magnetic surfaces in which surface states are observed.Comment: 5 pages, 4 figure

    Spin noise of itinerant fermions

    Full text link
    We develop a theory of spin noise spectroscopy of itinerant, noninteracting, spin-carrying fermions in different regimes of temperature and disorder. We use kinetic equations for the density matrix in spin variables. We find a general result with a clear physical interpretation, and discuss its dependence on temperature, the size of the system, and applied magnetic field. We consider two classes of experimental probes: 1. electron-spin-resonance (ESR)-type measurements, in which the probe response to a uniform magnetization increases linearly with the volume sampled, and 2. optical Kerr/Faraday rotation-type measurements, in which the probe response to a uniform magnetization increases linearly with the length of the light propagation in the sample, but is independent of the cross section of the light beam. Our theory provides a framework for interpreting recent experiments on atomic gases and conduction electrons in semiconductors and provides a baseline for identifying the effects of interactions on spin noise spectroscopy

    Strain-Induced Conduction Band Spin Splitting in GaAs from First Principles Calculations

    Full text link
    We use a recently developed self-consistent GW approximation to present first principles calculations of the conduction band spin splitting in GaAs under [110] strain. The spin orbit interaction is taken into account as a perturbation to the scalar relativistic hamiltonian. These are the first calculations of conduction band spin splitting under deformation based on a quasiparticle approach; and because the self-consistent GW scheme accurately reproduces the relevant band parameters, it is expected to be a reliable predictor of spin splittings. We also discuss the spin relaxation time under [110] strain and show that it exhibits an in-plane anisotropy, which can be exploited to obtain the magnitude and sign of the conduction band spin splitting experimentally.Comment: 8 pages, 4 figures, 1 tabl

    Reversal of spin polarization in Fe/GaAs (001) driven by resonant surface states: First-principles calculations

    Get PDF
    A minority-spin resonant state at the Fe/GaAs(001) interface is predicted to reverse the spin polarization with voltage bias of electrons transmitted across this interface. Using a Green's function approach within the local spin density approximation we calculate spin-dependent current in a Fe/GaAs/Cu tunnel junction as a function of applied bias voltage. We find a change in sign of the spin polarization of tunneling electrons with bias voltage due to the interface minority-spin resonance. This result explains recent experimental data on spin injection in Fe/GaAs contacts and on tunneling magnetoresistance in Fe/GaAs/Fe magnetic tunnel junctions

    Spin noise spectroscopy to probe quantum states of ultracold fermionic atomic gases

    Full text link
    Ultracold alkali atoms provide experimentally accessible model systems for probing quantum states that manifest themselves at the macroscopic scale. Recent experimental realizations of superfluidity in dilute gases of ultracold fermionic (half-integer spin) atoms offer exciting opportunities to directly test theoretical models of related many-body fermion systems that are inaccessible to experimental manipulation, such as neutron stars and quark-gluon plasmas. However, the microscopic interactions between fermions are potentially quite complex, and experiments in ultracold gases to date cannot clearly distinguish between the qualitatively different microscopic models that have been proposed. Here, we theoretically demonstrate that optical measurements of electron spin noise -- the intrinsic, random fluctuations of spin -- can probe the entangled quantum states of ultracold fermionic atomic gases and unambiguously reveal the detailed nature of the interatomic interactions. We show that different models predict different sets of resonances in the noise spectrum, and once the correct effective interatomic interaction model is identified, the line-shapes of the spin noise can be used to constrain this model. Further, experimental measurements of spin noise in classical (Boltzmann) alkali vapors are used to estimate the expected signal magnitudes for spin noise measurements in ultracold atom systems and to show that these measurements are feasible

    A quantitative study of spin noise spectroscopy in a classical gas of 41^{41}K atoms

    Full text link
    We present a general derivation of the electron spin noise power spectrum in alkali gases as measured by optical Faraday rotation, which applies to both classical gases at high temperatures as well as ultracold quantum gases. We show that the spin-noise power spectrum is determined by an electron spin-spin correlation function, and we find that measurements of the spin-noise power spectra for a classical gas of 41^{41}K atoms are in good agreement with the predicted values. Experimental and theoretical spin noise spectra are directly and quantitatively compared in both longitudinal and transverse magnetic fields up to the high magnetic field regime (where Zeeman energies exceed the intrinsic hyperfine energy splitting of the 41^{41}K ground state)

    Modulated optical reflectance measurements on La2/3Sr1/3MnO3 thin films

    Full text link
    The modulated optical reflectance (MOR) measurement technique was applied to colossal magnetoresistive materials, in particular, La2/3Sr1/3MnO3 (LSMO) thin films. The contactless measurement scheme is prospective for many applications spanning from materials characterization to new devices like reading heads for magnetically recorded media. A contrasted room temperature surface scan of a 100 microns wide 400 microns long bridge patterned into LSMO film provided preliminary information about the film homogeneity. Then the temperature was varied between 240 and 400 K, i.e. through the ferromagnetic to paramagnetic transition. A clear relation between the MOR signal measured as function of the temperature and the relative derivative of the resistivity up to the Curie temperature was observed. This relationship is fundamental for the MOR technique and its mechanism was explored in the particular case of LSMO. Analysis in the framework of the Drude model showed that, within certain conditions, the measured MOR signal changes are correlated to changes in the charge carrier concentration.Comment: 29 pages, accepted for publication in J. Appl. Phy

    Density and spin response functions in ultracold fermionic atom gases

    Full text link
    We propose a new method of detecting the onset of superfluidity in a two-component ultracold fermionic gas of atoms governed by an attractive short-range interaction. By studying the two-body correlation functions we find that a measurement of the momentum distribution of the density and spin response functions allows one to access separately the normal and anomalous densities. The change in sign at low momentum transfer of the density response function signals the transition between a BEC and a BCS regimes, characterized by small and large pairs, respectively. This change in sign of the density response function represents an unambiguous signature of the BEC to BCS crossover. Also, we predict spin rotational symmetry-breaking in this system

    Magnetic-field dependence of electron spin relaxation in n-type semiconductors

    Full text link
    We present a theoretical investigation of the magnetic field dependence of the longitudinal (T1T_1) and transverse (T2T_2) spin relaxation times of conduction band electrons in n-type III-V semiconductors. In particular, we find that the interplay between the Dyakonov-Perel process and an additional spin relaxation channel, which originates from the electron wave vector dependence of the electron gg-factor, yields a maximal T2T_2 at a finite magnetic field. We compare our results with existing experimental data on n-type GaAs and make specific additional predictions for the magnetic field dependence of electron spin lifetimes.Comment: accepted for publication in PRB, minor changes to previous manuscrip
    • …
    corecore