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Intrinsic long wavelength (X > 10 \im) infrared (IR) detectors are currently made
from the alloy (Hg, Cd) Te. There is one parameter, the alloy composition, which can
be varied to control the properties of this material. The parameter is chosen to set the
band gap (cut-off wavelength). The (Hg, Cd) Te alloy has the zincblend crystal
structure. Consequently, the election and light-hole effective masses are essentially
inversely proportional to the band gap whereas the heavy-hole effective mass is
essentially independent of the band gap. As a result, the electron and light-hole
effective masses are very small (Mc*/Mo ~ Mih/Mo < 0.01) whereas the heavy-hole
effective mass is ordinary size (Mhh*/M<, ~ 0.4) for the alloy compositions required for
intrinsic long wavelength IR detection. This combination of effective masses leads to
rather easy tunneling and relatively large Auger transition rates. These are undesirable
characteristics, which must be designed around, of an IR detector material. They
follow directly from the fact that (Hg, Cd) Te has the zincblend crystal structure and a
small band gap.

In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and
InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as
well as by the alloy composition (for superlattices containing an alloy). The effective
masses are not directly related to the band gap and can be separately varied. In
addition, both strain and quantum confinement can be used to split the light-hole band
away from the valence band maximum. These "band structure engineering" options
can be used to reduce tunneling probabilities and Auger transition rates compared with a
small band gap zincblend structure material. We discuss the different "band structure
engineering" options for the various classes of small band gap superlattices.
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OUTLINE

1) Introduction
2) Band structure engineering

a) Zincblende structure materials
b) Small band-gap superlattices

3) An example InAs/GalnSb
4) Conclusion
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BAND STRUCTURE PARAMETERS
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K.P THEORY
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SMALL BANDGAP SUPERLATTICES
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K-P THEORY SUPERLATTICE
SIMPLE CASE
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SUMMARY

1) Small band-gap superlattices offer
band structure engineering options
which make them interesting IR
materials

2) Examples of such superlattices
include:
a) HgTe/CdTe
b) InAsSb/lnSb
c) InAs/GalnSb

3) Predictions on Eg and a in
InAs/GalnSb
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