13 research outputs found

    Proton tracking for medical imaging and dosimetry

    Get PDF
    For many years, silicon micro-strip detectors have been successfully used as tracking detectors for particle and nuclear physics experiments. A new application of this technology is to the field of particle therapy, where radiotherapy is carried out by use of charged particles such as protons or carbon ions. Such a treatment has been shown to have advantages over standard x-ray radiotherapy and as a result of this, many new centres offering particle therapy are currently under construction—including two in the U.K.. The characteristics of a new silicon micro-strip detector based system for this application will be presented. The array uses specifically designed large area sensors in several stations in an x-u-v co-ordinate configuration suitable for very fast proton tracking with minimal ambiguities. The sensors will form a tracker capable of giving information on the path of high energy protons entering and exiting a patient. This will allow proton computed tomography (pCT) to aid the accurate delivery of treatment dose with tuned beam profile and energy. The tracker will also be capable of proton counting and position measurement at the higher fluences and full range of energies used during treatment allowing monitoring of the beam profile and total dose. Results and initial characterisation of sensors will be presented along with details of the proposed readout electronics. Radiation tests and studies with different electronics at the Clatterbridge Cancer Centre and the higher energy proton therapy facility of iThemba LABS in South Africa will also be shown

    First Results from Fermi GBM Earth Occultation Monitoring: Observations of Soft Gamma-Ray Sources Above 100 keV

    Get PDF
    The NaI and BGO detectors on the Gamma-ray Burst Monitor (GBM) on Fermi are now being used for long-term monitoring of the hard X-ray/low energy gamma-ray sky. Using the Earth occultation technique as demonstrated previously by the BATSE instrument on the Compton Gamma-Ray Observatory, GBM can be used to produce multiband light curves and spectra for known sources and transient outbursts in the 8 keV to 1 MeV energy range with its NaI detectors and up to 40 MeV with its BGO detectors. Over 85% of the sky is viewed every orbit, and the precession of the Fermi orbit allows the entire sky to be viewed every ~26 days with sensitivity exceeding that of BATSE at energies below ~25 keV and above ~1.5 MeV. We briefly describe the technique and present preliminary results using the NaI detectors after the first two years of observations at energies above 100 keV. Eight sources are detected with a significance greater than 7 sigma: the Crab, Cyg X-1, SWIFT J1753.5-0127, 1E 1740-29, Cen A, GRS 1915+105, and the transient sources XTE J1752-223 and GX 339-4. Two of the sources, the Crab and Cyg X-1, have also been detected above 300 keV.Comment: 13 pages, 9 figures, submitted to Ap

    Discovery of a z=0.65 post-starburst BAL quasar in the DES supernova fields

    Get PDF
    We present the discovery of a z = 0.65 low-ionization broad absorption line (LoBAL) quasar in a post-starburst galaxy in data from the Dark Energy Survey (DES) and spectroscopy from the Australian Dark Energy Survey (OzDES). LoBAL quasars are a minority of all BALs, and rarer still is that this object also exhibits broad Fe II (an FeLoBAL) and Balmer absorption. This is the first BAL quasar that has signatures of recently truncated star formation, which we estimate ended about 40 Myr ago. The characteristic signatures of an FeLoBAL require high column densities, which could be explained by the emergence of a young quasar from an early, dust-enshrouded phase, or by clouds compressed by a blast wave. The age of the starburst component is comparable to estimates of the lifetime of quasars, so if we assume the quasar activity is related to the truncation of the star formation, this object is better explained by the blast wave scenario
    corecore