14,092 research outputs found

    Quantitative Assessment of Children with Osteogenesis Imperfecta

    Get PDF
    Assessments of children with Osteogenesis Imperfecta (OI) are typically limited to a physical exam and observations from a clinician during a hospital visit. Often quantitative information such as bone mineral density and outcome questionnaires is obtained, but with the increasing prevalence of motion analysis and other performance type laboratories, there are many other tools available, which could be beneficial to this patient population. These laboratories can provide date supplementary to morphologic and radiographic data that is helpful in tracking changes in the patient’s functional abilities, recover from fracture, and treatment outcomes. This chapter will cover some useful evaluation methods for children with the most commonly seen types of OI and provide some examples of their test results

    Segmental Kinematic Analysis of Planovalgus Feet during Walking in Children with Cerebral Palsy

    Get PDF
    Pes planovalgus (flatfoot) is a common deformity among children with cerebral palsy. The Milwaukee Foot Model (MFM), a multi-segmental kinematic foot model, which uses radiography to align the underlying bony anatomy with reflective surface markers, was used to evaluate 20 pediatric participants (30 feet) with planovalgus secondary to cerebral palsy prior to surgery. Three-dimensional kinematics of the tibia, hindfoot, forefoot, and hallux segments are reported and compared to an age-matched control set of typically-developing children. Most results were consistent with known characteristics of the deformity and showed decreased plantar flexion of the forefoot relative to hindfoot, increased forefoot abduction, and decreased ranges of motion during push-off in the planovalgus group. Interestingly, while forefoot characteristics were uniformly distributed in a common direction in the transverse plane, there was marked variability of forefoot and hindfoot coronal plane and hindfoot transverse plane positioning. The key finding of these data was the radiographic indexing of the MFM was able to show flat feet in cerebral palsy do not always demonstrate more hindfoot eversion than the typically-developing hindfoot. The coronal plane kinematics of the hindfoot show cases planovalgus feet with the hindfoot in inversion, eversion, and neutral. Along with other metrics, the MFM can be a valuable tool for monitoring kinematic deformity, facilitating clinical decision making, and providing a quantitative analysis of surgical effects on the planovalgus foot

    Kinematic Foot Types in Youth with Equinovarus Secondary to Hemiplegia

    Get PDF
    Background Elevated kinematic variability of the foot and ankle segments exists during gait among individuals with equinovarus secondary to hemiplegic cerebral palsy (CP). Clinicians have previously addressed such variability by developing classification schemes to identify subgroups of individuals based on their kinematics. Objective To identify kinematic subgroups among youth with equinovarus secondary to CP using 3-dimensional multi-segment foot and ankle kinematics during locomotion as inputs for principal component analysis (PCA), and K-means cluster analysis. Methods In a single assessment session, multi-segment foot and ankle kinematics using the Milwaukee Foot Model (MFM) were collected in 24 children/adolescents with equinovarus and 20 typically developing children/adolescents. Results PCA was used as a data reduction technique on 40 variables. K-means cluster analysis was performed on the first six principal components (PCs) which accounted for 92% of the variance of the dataset. The PCs described the location and plane of involvement in the foot and ankle. Five distinct kinematic subgroups were identified using K-means clustering. Participants with equinovarus presented with variable involvement ranging from primary hindfoot or forefoot deviations to deformtiy that included both segments in multiple planes. Conclusion This study provides further evidence of the variability in foot characteristics associated with equinovarus secondary to hemiplegic CP. These findings would not have been detected using a single segment foot model. The identification of multiple kinematic subgroups with unique foot and ankle characteristics has the potential to improve treatment since similar patients within a subgroup are likely to benefit from the same intervention(s)

    Coagulation and fragmentation processes with evolving size and shape profiles : a semigroup approach

    Get PDF
    We investigate a class of bivariate coagulation-fragmentation equations. These equations describe the evolution of a system of particles that are characterised not only by a discrete size variable but also by a shape variable which can be either discrete or continuous. Existence and uniqueness of strong solutions to the associated abstract Cauchy problems are established by using the theory of substochastic semigroups of operators

    Loss of AND-34/BCAR3 Expression in Mice Results in Rupture of the Adult Lens

    Get PDF
    PURPOSE. AND-34/BCAR3 (Breast Cancer Anti-Estrogen Resistance 3) associates with the focal adhesion adaptor protein, p130CAS/BCAR1. Expression of AND-34 regulates epithelial cell growth pattern, motility, and growth factor dependence. We sought to establish the effects of the loss of AND-34 expression in a mammalian organism. METHODS. AND-34−/− mice were generated by homologous recombination. Histopathology, in situ hybridization, and western blotting were performed on murine tissues. RESULTS. Western analyses confirmed total loss of expression in AND-34−/− splenic lymphocytes. Mice lacking AND-34 are fertile and have normal longevity. While AND-34 is widely expressed in wild type mice, histologic analysis of multiple organs in AND-34−/− mice is unremarkable and analyses of lymphocyte development show no overt changes. A small percentage of AND-34−/− mice show distinctive small white eye lesions resulting from the migration of ruptured cortical lens tissue into the anterior chamber. Following initial vacuolization and liquefaction of the lens cortex first observed at postnatal day three, posterior lens rupture occurs in all AND-34−/− mice, beginning as early as three weeks and seen in all mice at three months. Western blot analysis and in situ hybridization confirmed the presence of AND-34 RNA and protein in lens epithelial cells, particularly at the lens equator. Prior data link AND-34 expression to the activation of Akt signaling. While Akt Ser 473 phosphorylation was readily detectable in AND-34+/+ lens epithelial cells, it was markedly reduced in the AND-34−/− lens epithelium. Basal levels of p130Cas phosphorylation were higher in AND-34+/+ than in AND-34−/− lens epithelium. CONCLUSIONS. These results demonstrate the loss of AND-34 dysregulates focal adhesion complex signaling in lens epithelial cells and suggest that AND-34-mediated signaling is required for maintenance of the structural integrity of the adult ocular lens.National Institutes of Health (RO1 CA114094); Logica Foundatio

    The evolution of the natural killer complex; a comparison between mammals using new high-quality genome assemblies and targeted annotation.

    Get PDF
    Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is in part created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-type lectin receptors encoded within the NK complex (NKC). Little is known about the gene content of the NKC beyond rodent and primate lineages, other than it appears to be extremely variable between mammalian groups. We compared the NKC structure between mammalian species using new high-quality draft genome assemblies for cattle and goat; re-annotated sheep, pig, and horse genome assemblies; and the published human, rat, and mouse lemur NKC. The major NKC genes are largely in the equivalent positions in all eight species, with significant independent expansions and deletions between species, allowing us to propose a model for NKC evolution during mammalian radiation. The ruminant species, cattle and goats, have independently evolved a second KLRC locus flanked by KLRA and KLRJ, and a novel KLRH-like gene has acquired an activating tail. This novel gene has duplicated several times within cattle, while other activating receptor genes have been selectively disrupted. Targeted genome enrichment in cattle identified varying levels of allelic polymorphism between the NKC genes concentrated in the predicted extracellular ligand-binding domains. This novel recombination and allelic polymorphism is consistent with NKC evolution under balancing selection, suggesting that this diversity influences individual immune responses and may impact on differential outcomes of pathogen infection and vaccination

    Modification of ÎČ-Sheet Forming Peptide Hydrophobic Face: Effect on Self-Assembly and Gelation

    Get PDF
    ÎČ-Sheet forming peptides have attracted significant interest for the design of hydrogels for biomedical applications. One of the main challenges is the control and understanding of the correlations between peptide molecular structure, the morphology, and topology of the fiber and network formed as well as the macroscopic properties of the hydrogel obtained. In this work, we have investigated the effect that functionalizing these peptides through their hydrophobic face has on their self-assembly and gelation. Our results show that the modification of the hydrophobic face results in a partial loss of the extended ÎČ-sheet conformation of the peptide and a significant change in fiber morphology from straight to kinked. As a consequence, the ability of these fibers to associate along their length and form large bundles is reduced. These structural changes (fiber structure and network topology) significantly affect the mechanical properties of the hydrogels (shear modulus and elasticity)

    Quantifying fenbendazole and its metabolites in self-medicating wild red grouse Lagopus lagopus scoticus using an HPLC–MS–MS approach

    Get PDF
    On red grouse estates in the UK the nematode parasite Trichostrongylus tenuis is often controlled by application of grit medicated with the anthelmintic fenbendazole (FBZ). To date, assessment of the efficacy has been inhibited by the inability to quantify uptake of FBZ by the birds. We have developed a simple and sensitive HPLC–MS–MS method for detecting and quantifying FBZ and its metabolites from a 300 mg sample of red grouse liver. This method could be used to improve the efficacy of medicated grit treatment by allowing the identification of conditions and application methods that optimize the uptake of FBZ. With the necessary modifications, our method will also be applicable to other wildlife species where self-medication is used for parasite control

    Self-Diagnosis and Self-Repair of an Active Tensegrity Structure

    Get PDF
    • 

    corecore