188 research outputs found

    Hydraulic analysis of the Wendelstein 7-X cooling loops

    No full text

    Conceptual aspects of line tensions

    Full text link
    We analyze two representative systems containing a three-phase-contact line: a liquid lens at a fluid--fluid interface and a liquid drop in contact with a gas phase residing on a solid substrate. We discuss to which extent the decomposition of the grand canonical free energy of such systems into volume, surface, and line contributions is unique in spite of the freedom one has in positioning the Gibbs dividing interfaces. In the case of a lens it is found that the line tension is independent of arbitrary choices of the Gibbs dividing interfaces. In the case of a drop, however, one arrives at two different possible definitions of the line tension. One of them corresponds seamlessly to that applicable to the lens. The line tension defined this way turns out to be independent of choices of the Gibbs dividing interfaces. In the case of the second definition,however, the line tension does depend on the choice of the Gibbs dividing interfaces. We provide equations for the equilibrium contact angles which are form-invariant with respect to notional shifts of dividing interfaces which only change the description of the system. Conceptual consistency requires to introduce additional stiffness constants attributed to the line. We show how these constants transform as a function of the relative displacements of the dividing interfaces. The dependences of the contact angles on lens or drop volumes do not render the line tension alone but a combination of the line tension, the Tolman length, and the stiffness constants of the line.Comment: 34 pages, 9 figure

    Status of High Heat Flux Components at W7-X

    Get PDF

    Soft Photons in Hadron-Hadron Collisions: Synchrotron Radiation from the QCD Vacuum?

    Get PDF
    We discuss the production of soft photons in high energy hadron-hadron collisions. We present a model where quarks and antiquarks in the hadrons emit ``synchrotron light'' when being deflected by the chromomagnetic fields of the QCD vacuum, which we assume to have a nonperturbative structure. This gives a source of prompt soft photons with frequencies ω<=300MeV\omega <= 300 MeV in the c.m. system of the collision in addition to hadronic bremsstrahlung. In comparing the frequency spectrum and rate of ``synchrotron'' photons to experimental results we find some supporting evidence for their existence. We make an exclusive--inclusive connection argument to deduce from the ``synchrotron'' effect a behaviour of the neutron electric formfactor GEn(Q2)G_E^n(Q^2) proportional to (Q2)1/6(Q^2)^{1/6} for Q2<20fm2Q^2 < 20 fm^{-2}. We find this to be consistent with available data. In our view, soft photon production in high energy hadron-hadron and lepton-hadron collisions as well as the behaviour of electromagnetic hadron formfactors for low Q2Q^2 are thus sensitive probes of the nonperturbative structure of the QCD vacuum.Comment: Heidelberg preprint HD-THEP-94-36, 31 pages, LaTeX + ZJCITE.sty (included), 12 figures appended as uuencoded compressed ps-fil

    Elastic Mid-Infrared Light Scattering: a Basis for Microscopy of Large-Scale Electrically Active Defects in Semiconducting Materials

    Full text link
    A method of the mid-IR-laser microscopy has been proposed for the investigation of the large-scale electrically and recombination active defects in semiconductors and non-destructive inspection of semiconductor materials and structures in the industries of microelectronics and photovoltaics. The basis for this development was laid with a wide cycle of the investigations on the low-angle mid-IR-light scattering in semiconductors. The essence of the technical idea was to apply the dark-field method for spatial filtering of the scattered light in the scanning mid-IR-laser microscope. This approach enabled the visualization of large-scale electrically active defects which are the regions enriched with ionized electrically active centers. The photoexcitation of excess carriers within a small volume located in the probe mid-IR-laser beam enabled the visualization of the large-scale recombination-active defects like those revealed in the optical or electron beam induced current methods. Both these methods of the scanning mid-IR-laser microscopy are now introduced in detail in the present paper as well as a summary of techniques used in the standard method of the lowangle mid-IR-light scattering itself. Besides the techniques for direct observations, methods for analyses of the defect composition associated with the mid-IR-laser microscopy are also discussed in the paper.Comment: 44 pages, 13 figures. A good oldi
    corecore