6,070 research outputs found

    Correlations, Risk and Crisis: From Physiology to Finance

    Full text link
    We study the dynamics of correlation and variance in systems under the load of environmental factors. A universal effect in ensembles of similar systems under the load of similar factors is described: in crisis, typically, even before obvious symptoms of crisis appear, correlation increases, and, at the same time, variance (and volatility) increases too. This effect is supported by many experiments and observations of groups of humans, mice, trees, grassy plants, and on financial time series. A general approach to the explanation of the effect through dynamics of individual adaptation of similar non-interactive individuals to a similar system of external factors is developed. Qualitatively, this approach follows Selye's idea about adaptation energy.Comment: 42 pages, 15 figures, misprints corrections, a proof is added, improved journal versio

    Термінологічні проблеми перекладу на прикладі фахової мови транспорту

    Get PDF
    Термінологічні проблеми перекладу на прикладі фахової мови транспорту. Смірнова. У статті розглянуто способи перекладу термінів фахової мови транспорту та виокремлено проблемні ділянки. Проаналізовано транспортні термінологічні утворення англійської мови та їх еквіваленти українською. Окреслено найбільш застосовувані лексико-семантичні та лексико-граматичні трансформаційні способи передачі значень термінологічних одиниць українською мовою. (Terminological problems of rendering professional transport language. Smirnova. The article deals with ways of rendering professional transport language terms and problematic areas were defined. English transport terminological units and their Ukrainian equivalents have been analyzed. The most common lexical-semantic and lexical-grammatical ways of rendering transport terminology into Ukrainian have been described.

    Evolution of adaptation mechanisms: adaptation energy, stress, and oscillating death

    Full text link
    In 1938, H. Selye proposed the notion of adaptation energy and published "Experimental evidence supporting the conception of adaptation energy". Adaptation of an animal to different factors appears as the spending of one resource. Adaptation energy is a hypothetical extensive quantity spent for adaptation. This term causes much debate when one takes it literally, as a physical quantity, i.e. a sort of energy. The controversial points of view impede the systematic use of the notion of adaptation energy despite experimental evidence. Nevertheless, the response to many harmful factors often has general non-specific form and we suggest that the mechanisms of physiological adaptation admit a very general and nonspecific description. We aim to demonstrate that Selye's adaptation energy is the cornerstone of the top-down approach to modelling of non-specific adaptation processes. We analyse Selye's axioms of adaptation energy together with Goldstone's modifications and propose a series of models for interpretation of these axioms. {\em Adaptation energy is considered as an internal coordinate on the `dominant path' in the model of adaptation}. The phenomena of `oscillating death' and `oscillating remission' are predicted on the base of the dynamical models of adaptation. Natural selection plays a key role in the evolution of mechanisms of physiological adaptation. We use the fitness optimization approach to study of the distribution of resources for neutralization of harmful factors, during adaptation to a multifactor environment, and analyse the optimal strategies for different systems of factors

    Phase and Intensity Distributions of Individual Pulses of PSR B0950+08

    Get PDF
    The distribution of the intensities of individual pulses of PSR B0950+08 as a function of the longitudes at which they appear is analyzed. The flux density of the pulsar at 111 MHz varies strongly from day to day (by up to a factor of 13) due to the passage of the radiation through the interstellar plasma (interstellar scintillation). The intensities of individual pulses can exceed the amplitude of the mean pulse profile, obtained by accumulating 770 pulses, by more than an order of magnitude. The intensity distribution along the mean profile is very different for weak and strong pulses. The differential distribution function for the intensities is a power law with index n = -1.1 +- 0.06 up to peak flux densities for individual pulses of the order of 160 Jy

    Position-sensitive detector for the 6-meter optical telescope

    Full text link
    The Position-Sensitive Detector (PSD) for photometrical and spectral observation on the 6-meter optical telescope of the Special Astrophysical Observatory (Russia) is described. The PSD consists of a position-sensitive tube, amplifiers of output signals, analog-to-digital converters (ADC) and a digital logic plate, which produces a signal for ADC start and an external strob pulse for reading information by registration system. If necessary, the thermoelectric cooler can be used. The position-sensitive tube has the following main elements: a photocathode, electrodes of inverting optics, a block of microchannel plates (MCP) and a position-sensitive collector of quadrant type. The main parameters of the PSD are the diameter of the sensitive surface is 25 mm, the spatial resolution is better than 100 (\mu)m in the centre and a little worse on the periphery; the dead time is near 0.5 (\mu)s; the detection quantum efficiency is defined by the photocathode and it is not less than 0.1, as a rule; dark current is about hundreds of cps, or less, when cooling. PSD spectral sensitivity depends on the type of photocathode and input window material. We use a multialkali photocathode and a fiber or UV-glass, which gives the short- wave cut of 360 nm or 250 nm, respectively.Comment: 4 pages, 7 figures, to be published in Nuclear Instruments & Methods in Physics Researc

    Body composition data from the rat subjects of Cosmos 1129 experiment K-316

    Get PDF
    The effects of 18.5 days of weightlessness on the body composition of young, growing, male laboratory rats were examined. Three groups of 5 rats each were examined. It is indicated that exposure of young, growing, male rats to 18.5 days of weightlessness produces: (1) no effect on the quantity of fat stored by the body; (2) a slight reduction in the quantity of fat free tissue laid down by the body; (3) a small reduction in the fraction of water contained by the fat free body mass; (4) a similar reduction in the fraction of water contained by the fat free skin and fat free carcass; (5) a shift in relative distribution of the total body water from skin to viscera; (6) a diminution in the fraction of extracellular water contained by the fat free body; (7) no effect on the fraction of total skeletal musculature contained by the fat free body, as indicated by body creatine content; (8) a sizeable reduction in the fraction of bone mineral contained by the fat free body, as calculated from body calcium content. The nature of the physiological changes induced by unloading from Earth gravity in the mammalian organism are illustrated
    corecore