532 research outputs found
Emptiness Formation Probability and Quantum Knizhnik-Zamolodchikov Equation
We consider the one-dimensional XXX spin 1/2 Heisenberg antiferromagnet at
zero temperature and zero magnetic field. We are interested in a probability of
formation of a ferromagnetic string in the antiferromagnetic ground-state. We
call it emptiness formation probability [EFP]. We suggest a new technique for
computation of EFP in the inhomogeneous case. It is based on quantum
Knizhnik-Zamolodchikov equation. We evalauted EFP for strings of the length six
in the inhomogeneous case. The homogeneous limit confirms our hypothesis about
the relation of quantum correlations to number theory. We also make a
conjecture about a general structure of EFP for arbitrary lenght of the string
\.Comment: LATEX file, 23 pages, 21 reference
Particle-Field Duality and Form Factors from Vertex Operators
Using a duality between the space of particles and the space of fields, we
show how one can compute form factors directly in the space of fields. This
introduces the notion of vertex operators, and form factors are vacuum
expectation values of such vertex operators in the space of fields. The vertex
operators can be constructed explicitly in radial quantization. Furthermore,
these vertex operators can be exactly bosonized in momentum space. We develop
these ideas by studying the free-fermion point of the sine-Gordon theory, and
use this scheme to compute some form-factors of some non-free fields in the
sine-Gordon theory. This work further clarifies earlier work of one of the
authors, and extends it to include the periodic sector.Comment: 17 pages, 2 figures, CLNS 93/??
Quantization of Solitons and the Restricted Sine-Gordon Model
We show how to compute form factors, matrix elements of local fields, in the
restricted sine-Gordon model, at the reflectionless points, by quantizing
solitons. We introduce (quantum) separated variables in which the Hamiltonians
are expressed in terms of (quantum) tau-functions. We explicitly describe the
soliton wave functions, and we explain how the restriction is related to an
unusual hermitian structure. We also present a semi-classical analysis which
enlightens the fact that the restricted sine-Gordon model corresponds to an
analytical continuation of the sine-Gordon model, intermediate between
sine-Gordon and KdV.Comment: 29 pages, Latex, minor updatin
Kink Confinement and Supersymmetry
We analyze non-integrable deformations of two-dimensional N=1 supersymmetric
quantum field theories with kink excitations. As example, we consider the
multi-frequency Super Sine Gordon model. At weak coupling, this model is robust
with respect to kink confinement phenomena, in contrast to the purely bosonic
case. If we vary the coupling, the model presents a sequence of phase
transitions, where pairs of kinks disappear from the spectrum. The phase
transitions fall into two classes: the first presents the critical behaviors of
the Tricritical Ising model, the second instead those of the gaussian model. In
the first case, close to the critical point, the model has metastable vacua,
with a spontaneously supersymmetry breaking. When the life-time of the
metastable vacua is sufficiently long, the role of goldstino is given by the
massless Majorana fermion of the Ising model. On the contrary, supersymmetry
remains exact in the phase transition of the second type.Comment: 29 pages, 12 figure
Hidden Grassmann Structure in the XXZ Model IV: CFT limit
The Grassmann structure of the critical XXZ spin chain is studied in the
limit to conformal field theory. A new description of Virasoro Verma modules is
proposed in terms of Zamolodchikov's integrals of motion and two families of
fermionic creation operators. The exact relation to the usual Virasoro
description is found up to level 6.Comment: 44 pages, 1 figure. Version 3: some corrections are don
Recommended from our members
A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly
Understanding the influence of changes in solar activity on Earth's climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000-1300 CE after which the solar-climate coupling weakened considerably
Small-threshold behaviour of two-loop self-energy diagrams: some special cases
An algorithm to construct analytic approximations to two-loop diagrams
describing their behaviour at small non-zero thresholds is discussed. For some
special cases (involving two different-scale mass parameters), several terms of
the expansion are obtained.Comment: 7 pages, plain latex; talk given at DESY-Zeuthen Workshop "QCD and
QED in Higher Order", Rheinsberg, April 1996, to appear in Proceeding
A regime shift in the Sun-Climate connection with the end of the Medieval Climate Anomaly
Understanding the influence of changes in solar activity on Earth’s climate and distinguishing it from other forcings, such as volcanic activity, remains a major challenge for palaeoclimatology. This problem is best approached by investigating how these variables influenced past climate conditions as recorded in high precision paleoclimate archives. In particular, determining if the climate system response to these forcings changes through time is critical. Here we use the Wiener-Granger causality approach along with well-established cross-correlation analysis to investigate the causal relationship between solar activity, volcanic forcing, and climate as reflected in well-established Intertropical Convergence Zone (ITCZ) rainfall proxy records from Yok Balum Cave, southern Belize. Our analysis reveals a consistent influence of volcanic activity on regional Central American climate over the last two millennia. However, the coupling between solar variability and local climate varied with time, with a regime shift around 1000–1300 CE after which the solar-climate coupling weakened considerably
Correlation Functions Along a Massless Flow
A non-perturbative method based on the Form Factor bootstrap approach is
proposed for the analysis of correlation functions of 2-D massless integrable
theories and applied to the massless flow between the Tricritical and the
Critical Ising Models.Comment: 11 pages (two figures not included in the text), Latex file,
ISAS/EP/94/15
Differential Equations for Definition and Evaluation of Feynman Integrals
It is shown that every Feynman integral can be interpreted as Green function
of some linear differential operator with constant coefficients. This
definition is equivalent to usual one but needs no regularization and
application of -operation. It is argued that presented formalism is
convenient for practical calculations of Feynman integrals.Comment: pages, LaTEX, MSU-PHYS-HEP-Lu2/9
- …