15,746 research outputs found

    Track Reconstruction for Forward Spectrometer of SPES4-pi Experiment

    Get PDF
    Description of a 3-dimensional track reconstruction procedure applied for the 6-layer system of the drift chambers of the Forward Spectrometer of SPES4-Ď€\pi experiment is given. The setup is characterized by low track multiplicity (one or a few tracks), a few random noise clusters per layer, and many ghost tracks. The procedure consists of pattern recognition and ghost pattern removal. The latter is done by optimization of insufficiency and redundancy of cluster occupation by the minimal necessary number of patterns

    LikelihoodLib - Fitting, Function Maximization, and Numerical Analysis

    Get PDF
    A new class library is designed for function maximization, minimization, solution of equations and for other problems related to mathematical analysis of multi-parameter functions by numerical iterative methods. When we search the maximum or another special point of a function, we may change and fit all parameters simultaneously, sequentially, recursively, or by any combination of these methods. The discussion is focused on the first the most complicated method, although the others are also supported by the library. For this method we apply: control of precision by interval computations; the calculation of derivatives either by differential arithmetic, or by the method of finite differences with the step lengths which provide suppression of the influence of numerical noise; possible synchronization of the subjective function calls with minimization of the number of iterations; competitive application of various methods for step calculation, and converging to the solution by many trajectories

    Quasi-exactly solvable problems and the dual (q-)Hahn polynomials

    Full text link
    A second-order differential (q-difference) eigenvalue equation is constructed whose solutions are generating functions of the dual (q-)Hahn polynomials. The fact is noticed that these generating functions are reduced to the (little q-)Jacobi polynomials, and implications of this for quasi-exactly solvable problems are studied. A connection with the Azbel-Hofstadter problem is indicated.Comment: 15 pages, LaTex; final version, presentation improved, title changed, to appear in J.Math.Phy

    Free field representation for the O(3) nonlinear sigma model and bootstrap fusion

    Get PDF
    The possibility of the application of the free field representation developed by Lukyanov for massive integrable models is investigated in the context of the O(3) sigma model. We use the bootstrap fusion procedure to construct a free field representation for the O(3) Zamolodchikov- Faddeev algebra and to write down a representation for the solutions of the form-factor equations which is similar to the ones obtained previously for the sine-Gordon and SU(2) Thirring models. We discuss also the possibility of developing further this representation for the O(3) model and comment on the extension to other integrable field theories.Comment: 14 pages, latex, revtex v3.0 macro package, no figures Accepted for publication in Phys. Rev.

    Form-factors of the sausage model obtained with bootstrap fusion from sine-Gordon theory

    Get PDF
    We continue the investigation of massive integrable models by means of the bootstrap fusion procedure, started in our previous work on O(3) nonlinear sigma model. Using the analogy with SU(2) Thirring model and the O(3) nonlinear sigma model we prove a similar relation between sine-Gordon theory and a one-parameter deformation of the O(3) sigma model, the sausage model. This allows us to write down a free field representation for the Zamolodchikov-Faddeev algebra of the sausage model and to construct an integral representation for the generating functions of form-factors in this theory. We also clear up the origin of the singularities in the bootstrap construction and the reason for the problem with the kinematical poles.Comment: 16 pages, revtex; references added, some typos corrected. Accepted for publication in Physical Review

    Energetic Consistency and Momentum Conservation in the Gyrokinetic Description of Tokamak Plasmas

    Full text link
    Gyrokinetic field theory is addressed in the context of a general Hamiltonian. The background magnetic geometry is static and axisymmetric, and all dependence of the Lagrangian upon dynamical variables is in the Hamiltonian or in free field terms. Equations for the fields are given by functional derivatives. The symmetry through the Hamiltonian with time and toroidal angle invariance of the geometry lead to energy and toroidal momentum conservation. In various levels of ordering against fluctuation amplitude, energetic consistency is exact. The role of this in underpinning of conservation laws is emphasised. Local transport equations for the vorticity, toroidal momentum, and energy are derived. In particular, the momentum equation is shown for any form of Hamiltonian to be well behaved and to relax to its magnetohydrodynamic (MHD) form when long wavelength approximations are taken in the Hamiltonian. Several currently used forms, those which form the basis of most global simulations, are shown to be well defined within the gyrokinetic field theory and energetic consistency.Comment: RevTeX 4, 47 pages, no figures, revised version updated following referee comments (discussion more strictly correct/consistent, 4 references added, results unchanged as they depend on consistency of the theory), resubmitted to Physics of Plasma

    Annihilation poles of a Smirnov-type integral formula for solutions to quantum Knizhnik--Zamolodchikov equation

    Get PDF
    We consider the recently obtained integral representation of quantum Knizhnik-Zamolodchikov equation of level 0. We obtain the condition for the integral kernel such that these solutions satisfy three axioms for form factor \'{a} la Smirnov. We discuss the relation between this integral representation and the form factor of XXZ spin chain.Comment: 14 pages, latex, no figures
    • …
    corecore