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Abstract

A new class library is designed for function maximization,

minimization, solution of equations and for other problems

related to mathematical analysis of multi-parameter func-

tions by numerical iterative methods. When we search the

maximum or another special point of a function, we may

change and �t all parameters simultaneously, sequentially,

recursively, or by any combination of these methods. The dis-

cussion is focused on the �rst the most complicated method,

although the others are also supported by the library. For

this method we apply: control of precision by interval com-

putations; the calculation of derivatives either by di�erential

arithmetic, or by the method of �nite di�erences with the step

lengths which provide suppression of the inuence of numeri-

cal noise; possible synchronization of the subjective function

calls with minimization of the number of iterations; compet-

itive application of various methods for step calculation, and

converging to the solution by many trajectories.

1 Introduction

A �tting program is a prerequisite component of any analytical
system for data treatment or analysis in any problem domain. The
term \�tting" usually means an iterative procedure of adjustment
of the parameters of a model which describes the data of any sort.
We usually determine a function which estimates numerically how
close the model �ts the data. Then we search either the minimum
or maximum of this function using ordinary methods of mathe-
matical analysis, which usually give an approximate solution or
just a hint regarding its position and are applied in the iterative
procedures together with strategies of trials. A similar approach,
an iterative procedure upon parameters of one or many functions
aimed at satisfying some conditions regarding their values, is used
for solution of simultaneous equations (see, for example [1]), as well
as for many other problems. These functions do not necessarily
represent a model. Nevertheless, by the methods of solution, the
iterative adjustment of parameters, this is also the �tting in broad
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sense. In any such problem we deal with similar mathematical ab-
stractions: imaginary objects and algorithms. In object-oriented
programming these abstractions can be expressed via a set of foun-
dation classes and functions, which can be utilized for solution of
the most of such problems. The idea to compose such class library
is especially attractive from the point of view of the scalability and
re-use[2], because the tools designed for one particular problem and
made available inside this framework may be eventually demanded
by other problems.

It is supposed that the objective function or functions will be
determined by the user of this library in the form of the program-
ming function which returns their values and optionally the partial
derivatives. The program knows nothing more about the objective
function except that the program can request the function value for
any allowed point in the parameter space. This determines the prin-
cipal di�erence between approaches to one-parameter problems, for
which this point information usually allows to determine a closed re-
gion, an interval, where the solution resides, from many-parameter
ones, for which this is impossible.

Of course, if it is known that the parameters are not corre-
lated, the many-parameter problem can be reduced to many one-
parameter ones. If the parameters are slightly correlated, the prob-
lem can be solved with the reasonable precision by the multiple ap-
plication of the previous procedure. The correlated many-parameter
problem with not too many parameters can sometimes be eÆciently
solved by the recursive application of the one-parameter �t, when
for each investigated value of the �rst parameter the best value of
the second is �tted, and for each combination of the �rst and sec-
ond, the third is also �tted, and so on. However, this guarantees the
presence of the solution inside the found interval only for the �rst
parameter �tted on the uppermost level, and provided that the pre-
cision of �tting the other parameters adjusted on the internal levels
is absolute. Otherwise, the subjective function for the uppermost
level �tting will have little discontinuities or little random admix-
ture. In fact, such numerical noise in the subjective function may
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appear at the application of any adaptive computational procedure
with adjustable steps, intervals, etc.

Thus, although the subjective function is usually assumed smooth
in the mathematical sense, its computer representation always has
rounding errors and often has the admixture of numerical noise. It
is desirable that the �tting algorithms would be tolerant regarding
these errors. Our algorithms for one-parameter �t are not quite per-
fect in this sense, but they are not the subject of this paper. Here
we will discuss the maximization of an arbitrary multi-parameter
function with simultaneous adjustment of its parameters, for which
the toleration to the numerical noise is also a crucial issue.

We are especially interested in �tting \heavy" functions, with
large computer time consumptions, singular behavior, many corre-
lated parameters varied in a restricted domain, having the signif-
icant third and larger order terms in the Taylor-series expansions
and computed with the �nite numerical precision.

This set of problems is eventually combined with the large time
span between ordering and receiving the function value (usually
due to remote allocation of data) and with the possibility to order
many function values at once waiting for their receiving nearly the
same time. The large time span can e�ectively prohibit the solu-
tion of some rare but important problems unless the program can
synchronize the function calls. The synchronization is not entirely
the technical problem. Whether it is possible or not is determined
by the �tting strategy.

In general, all studies on the �tting strategy fall into two par-
tially overlapped groups and di�er mostly by their attitude to the
use of function derivatives. The use of derivatives implies that their
values at any requested point should be either supplied by the user
or, when it is impossible, computed by the program. The latter is
done either by the �nite di�erences, or, for the second derivatives,
by the use of features of a particular form of the subjective func-
tions (linearization for the minimum squares)[3, 4, 5, 6]. Also the
second derivatives are sometimes evaluated by observing how the
�rst ones vary from iteration to iteration, but this is just a variant
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of the �nite di�erences (the references to such works can be found
in [7]). Then, the derivatives are used either to localize the solu-
tion, or to try the next approximation or trial, and to evaluate the
precision of the current iteration.

The adequate utilization of derivatives, as well as their correct
calculation, is not so simple as it sometimes seems. This led other
authors[1, 8, 9] to the conclusion that \the returns from this activity
are not commensurate with the e�ort required"[8] and motivated
developing the adaptive trial algorithms which do not need deriva-
tives at all, or use only the �rst ones. They typically choose the
next step depending whether the previous one was successful or
not, which is determined by the comparison of the function val-
ues. The initial trials are more or less random, but then the special
procedures adapt the farther movement to the particular landscape
and gradually converge to the solution. Of course, this strategy
is worth-while only if the user does not supply derivatives, which
could otherwise make the trials much more purposeful. However,
even if the user does not supply derivatives, it is unclear whether
this strategy excels the opposite method based on the numerical
calculation of derivatives by �nite di�erences and on their correct
utilization.

The discussions about which approach for this case is better
are usually \rich in opinions but somewhat de�cient in facts"[8].
To make up this de�ciency we remark that the adaptive trial algo-
rithms inherently deny synchronization of the function calls, while
the algorithms with derivatives are well compatible with it.

Indeed, the computations by �nite di�erences consist in explor-
ing how much the function value at the current \central" point dif-
fers from that at the set of neighboring ones. Obviously, all these
points can be requested simultaneously. Of course, there is a prob-
lem of choosing adequate distances between them or di�erential
step sizes. To suppress the inuence of the large-order derivatives
these di�erential steps should not be too large. Simultaneously they
should not be too small so as to suppress the numerical noise and
rounding errors[1, 10]. However, these problems can be solved. In
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particular, the latter problem is solved by interval computations.
Although the derivatives allow to make the trials more purpose-

ful, they does not guarantee the success of each. Meanwhile, from
each point we may try many steps determined by di�erent assump-
tions regarding the function behaviour and expressed by di�erent
formulas or algorithms. Moreover, we may search the solution si-
multaneously by many trajectories, considering at every iteration
many current points, steps, and exploiting di�erent step genera-
tors, even those which are not compatible with the synchronization
if taken alone. If the synchronization does matter, all necessary
points at each iteration can be ordered synchronously. Such an ap-
proach may be faster and is expected to be very resistant against
converging to local maxima, minima and other detrimental phe-
nomena.

To our knowledge, none of the available programs (see, for ex-
ample, FUMILI[4] and MINUIT[7]) support these requirements.

The known programs also do not support recursive �tting, in
which at the each step of one �tting procedure another �tting task is
executed inside the same program. This problem may seem exotic,
but really it is not so. It has already been mentioned that if the
�tted variables are strongly correlated, the recursive �tting is some-
times the most eÆcient way of problem solution. For problems like
Rosenbrock's valley[1] the number of function calls may be reduced
by the order of magnitude. Moreover, even for classical simulta-
neous �tting all parameters, the calculation of the next step from
each current point can anyway be performed by an iterative �tting
procedure, usually by the analysis of the Taylor expansion obtained
at the current point[5, 6]. Obviously, this local iterative procedure
is recursive with respect to the global one. To provide the recursive
�tting, the data of each �tting process should be well isolated from
the others. This inuences the choice of the programming language
and the program design. In particular, this consideration e�ectively
prohibits FORTRAN77 with its static data and favors the use of
C++ and object-oriented programming.

These considerations have motivated the development of a new
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class library. However, our work has been stipulated by our prac-
tical needs and by real possibilities. Therefore a set of founda-
tion classes for numerical analysis, appearing applicable for wide
range of problems, is supplemented only by a few realized applica-
tions, from which we describe here only one: the maximization of
a multi-parameter function. This description is rather illustrative
and touches on mainly the principal aspects of the program design,
to the extent in which we were able to recognize them among the
vast amount of less important information.

The program is coded in C++. We included in this text some
notations used in the program and given in the syntax of C++.
The class diagram is presented in notations similar to that of G.
Booch[11]. Our notations di�er from these conventions only in the
notation of class itself, for which we use more compact rectangular
box with rounded corners, and in the notation of objects controlled
by the pointers, the original concept explained in the appendix and
marked by the open crossed box at the side of the addressed object.

2 Structure of program

In order to make the program scalable and re-usable, we need to
determine the classes as the representations of the abstractions of
our subject area, the numerical analysis of functions. However, the
most of its abstractions represent not static objects but actions:
procedures, or algorithms which should be represented in program-
ming as functions. The di�erence between an object and an action
is usually clear: the object is a real or imaginary body which can
be created, moved, copied and destroyed (deleted); the action is
a process which can be just started and �nished. For example,
the maximization is an action, the subjective function is also an
action. These actions are logically connected and use many other
accessory functions and parameters which assist in maximization.
Although all these functions and other attributes do not represent
the body, even imaginary, they can not work without each other,
and hence should be initialized and annulled synchronously. This

8



motivates their declaration as the members of a single class. The
principal members of this class are the subjective function and the
function solving the �tting problem. The subjective function is
usually called here virtual void calc_function_event(), but it
has di�erent arguments depending on the problem. The function
solving the �tting problem is usually called execute(void). This
function is responsible for initialization, processing the necessary
number of iterations, termination, and for debug printing. It turns
out that such function is necessary for solution of any problem, al-
though this function is not always expected to be directly called
by the user. This means that we can de�ne this common func-
tion, as well as many other ones, in a common base class, here the
class ModelFunction (see �g. 1), from which we can derive classes
adapted for any particular problems.

The standard procedure implemented in the function execute()
consists of the iterations at which we compute the function values
in the ordered points, calculate next steps, compute the functions
at the end of the steps, choose the best steps and initialize the new
points. Instead of points we sometimes use the term \nodes" to
stress the fact that one node may represent several current points,
although we can also consider many current nodes at each stage.
Thus we will need a few more member functions which

compute the subjective function values in the ordered points,
void calc_fun(...);

compute the next steps, int calc_steps(void);

choose the best steps and initialize the new points,
int new_nodes(void).

The last two functions should check the �nishing conditions and
issue an order to �nish when necessary. The calculations of the
subjective function values are specially gathered into a single func-
tion void calc_fun(...) so as to provide the synchronization, the
possibility to order several function values at once. Besides synchro-
nization this function should assist in handling many events, nu-
merical calculation of the derivatives, evaluation of the precision of
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Figure 1: The class diagram of LikelihoodLib.
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the derivatives, increasing the precision if necessary, and repetition
of calculation of the derivatives. Of course, there are problems in
which all the additional features: synchronization, handling many
events and derivatives, are not necessary. For example, sometimes
we need merely calculate the function value in one single point.
Then we overload this virtual function by a special version de�ned
in derived class, as we did it in class SteepestAscent.

The subjective function is to be declared and de�ned in the
sub-classes of ModelFunction. Of course, it can have very di�erent
headers even for the problems which are solved with the base version
of void calc_fun(...). To call the subjective function, as well as
to check and to increase the precision, calc_fun() should appeal
to intermediate agents with �xed headers, pure member functions
of an abstract base class, here GenFunc. Each class derived from
it should contain current parameters at which the function is to be
computed, the results of this computation, the de�nition of that
agent function as a call of the real subjective function determined
in the corresponding object of the sub-class of ModelFunction, and
also a function which checks and increase the precision.

In detail, the class GenFunc declares the following headers:

virtual void calc_fun_event(...)=0 { computes the func-
tion for one event.

virtual void calc_fun(void)=0 { computes the derivatives
if necessary.

virtual int increase_precision(void) {return 0;} {
increases the di�erential steps if necessary and returns 1 if
increased.

The function ModelFunction::calc_fun(...) accesses all these
methods via the protected pointers to GenFunc (The sense of the
protected pointers ProtPtr<> is explained in the appendix). The
class ModelFunction contains an array with variable length
DinLinArr< ProtPtr<GenFunc> > genfunc with these pointers.
They should be initialized during the calls of calc_steps() and
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new_nodes(). If the derivatives are computed by �nite di�erences,
the real subjective function may be called many times in each call
of GenFunc::calc_fun_event(...). Its argument may be either
the total sub-class of GenFunc (if the derivatives are not necessary)
or smaller class determining a particular point.

Two auxiliary member functions of ModelFunction are used
for handling the events or bins. The synchronization may be im-
plemented either by reading the next event and multiple calling the
user function related to one event and one point, or by calling a
more complicated user function which itself should manage reading
all events and calculations for all necessary points. The latter is
more convenient when the reading program is stand-alone. It may
even run on a di�erent computer.

Thus, we need two auxiliary member functions:

fix_ev(...) { �xes the next event or issues a signature of
�nishing. Fixing the event may consists in its reading from a
disk �le, or conducting preliminary mathematical calculations
common for all points.

end_ev(...) { �nishes calculations of the current event.
Called after the calls of the studied function for all requested
points. Useful for the second type of synchronization, when
the program should issue the request for processing all events
and points simultaneously.

We determined two sub-classes of GenFunc:

The class ValFunc { a many-parameter many-value function
without derivatives.

The class TFunDef { a many-parameter single-value function
with derivatives (some operations are currently determined
only up to the second order).

They correspond to the following sub-classes of ModelFunction:

The class ValModelFunction oriented for solution of one-
parameter problems or many-parameter problems by sequen-
tial solution of one-parameter problems.
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The class DifModelFunction oriented for solution of many-
parameter problems by free motion in the parameter space.

The both sub-classes may be invoked recursively in any combina-
tions and in any depth.

The both sub-classes also have derived classes. The class
ValModelFunction is specialized in the classes MVMFEquation and
MFMaximum, which adjust only one parameter, and in MUVMFEquation
and MUFMaximum, which arrange sequential adjusting of all param-
eters. The latter classes are eÆcient for the functions with the lit-
tle correlation between the parameters. Otherwise, a very eÆcient
procedure is the recursive application of two �rst classes. Note
that when dealing with the latter classes the user should call the
function total_execute() instead of standard execute(). The
function total_execute() calls execute() for each parameter in
a loop until the solution stops migrating.

The class DifModelFunction has only one sub-class designed
for �tting, FitModelFunction.

The class ValFunc has a very simple structure. The function
ValFunc::calc_fun_event(...) just calls the subjective function
declared in ValModelFunction. The function
ValFunc::calc_fun(...) does nothing.

The structure of the class TFunDef is much more sophisticated.
If the user does not supply derivatives, this class computes them
numerically. For this purpose besides the main point it should de-
termine and keep the function value and the available derivatives
in some neighboring points dispersed around the main one by dif-
ferential steps. To handle these points we need a simpler class
functioning as a container for the function and its derivatives but
unable to compute them by �nite di�erences. Nevertheless, as it is
shown in section 4, such class, called here TFun, can compute the
derivatives semi-analytically.

At the calculation of the di�erential steps the program should
take into account some restrictions determined by the user as the
minimal or maximum di�erential steps. The program should choose
the di�erential steps so that they would meet these restrictions and
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provide adequate numerical precision. This can be done by the anal-
ysis of the values and the precision of the derivatives calculated for
some neighboring point usually investigated at the previous iter-
ation. The natural assumption is that the second derivative does
not vary signi�cantly. Since this is not guaranteed, after the current
point is calculated, the precision should be checked. If the preci-
sion is not adequate, we may not be able to infer the correct value
of the di�erential steps. Therefore they are merely increased by
10 times or till the maximum allowed value, and the repetition of
the calculations is requested. The requirements on the precision de-
pend on methods which generate steps. Therefore the class TFunDef
and its sub-class CalcTFun call some virtual methods of the class
DifModelFunction, which are speci�ed in FitModelFunction and
call some functions of the classes derived from FitStep.

The boundaries of the valid space may be either strict or not,
which means that the di�erential steps either can step out of the
boundaries or can not (the ban is useful if the function is singular
outside). In the latter case the con�guration of the location of the
additional points depends on whether the main point is near the
boundary. If the standard allocation of the additional points around
the main one leads to violation of the strict boundary, the program
puts them from one side of the main point toward internal space
and use other formulas for di�erentiation.

The boundaries of the working area for the parameters of TFunDef
are to be determined by a class derived from the class AbsBoundCond.
Currently the class AbsBoundCond has only one speci�c instance
InterBCond determining independent intervals for every parameter.
The object of this class is accessible from TFunDef via the protected
pointer to DifModelFunction and from the latter to AbsBoundCond.
A principal method of this class restricts by the components the
vector of parameters, which is usually the next step, by such a way
that it �nishes at the boundary.

The �tting program may not need the function value and the
derivatives at once. At the beginning the program usually needs
only the function value to check if the trial is successful. The deriva-
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tives will be needed only for the successful trial. To optimize the
speed of computing, the user may choose to order the subjective
function either in the main and all additional points at once, or to
calculate only the main point and to postpone the additional ones
until the trial is accepted.

In addition, some of the parameters may be �xed at �tting, and
the corresponding derivatives should just be assigned zeros without
calculations of the corresponding additional points.

The class TFunDef contains a lot of useful data members and
functions which we will not describe in detail.

For both classes ValModelFunction and DifModelFunction the
second type of synchronization is supported by the similar data
members (the class names are omitted):

DinLinArr<PosponedValFuncDescriptor> pfd;

DinLinArr<PosponedDifFuncDescriptor> pfd;

and by the possibility to specify the subjective function which
does not calculate anything but merely copies its argument to pfd.
The actual calculations should be done inside overloaded end_ev()

which should use pfd.
The class FitModelFunction is designed by the principle of

competitive application of many available methods for step gener-
ation from one or many current points. After the steps are pro-
posed by all available methods, it selects the best steps by ratings.
The rating is meant to represent the reliability of the step method
and the expected function value at the end. It is calculated as
the weighted sum of the current and expected function values with
weights depending on the method. The number of steps selected at
this stage is not more than int FitModelFunction::q_watch_step.
Then the class FitModelFunction requests the function values at
the end points and chooses a few points with the largest function,
not more than int FitModelFunction::q_watch_point. The func-
tion value at the chosen end point of the step should be more than
its value at the point from which the step originates. Otherwise,
the step is not accepted. If q_watch_point is not accumulated,
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the class FitModelFunction asks the particular method to correct
the step, taking into account the obtained function value. This ap-
proach resembles the method of \information board" used in some
researches on arti�cial intelligence[11].

This procedure starts from one or many initial points, but �n-
ishes only at one. Even if a few methods simultaneously detect
the �nishing conditions, the point with the largest function value is
chosen. Not only the particular methods de�ne the �nishing con-
ditions, but the class FitModelFunction participates in this also.
Even if a particular method announces �nishing, this class may not
accept the announcement if it detects that the maximal value of
the function ever found is more that f�nish + jf�nish � �yj, where �y
stands for double FitModelFunction::rel_accuracy_y

If the solution is found, the associated statistical error can be
found on the basis of the inverse Hessian matrix and checked by
shifting of any one parameter by �� from the solution and �tting
the others. This is done in the member function report(...).

3 Numerical inaccuracy and interval compu-

tations

The rounding errors and the numerical noise often appearing in the
subjective function values corrupt the derivatives computed by �-
nite di�erences unless the di�erential steps are large enough and
the natural variation of the function exceeds its numerical inaccu-
racy. The inaccurate derivatives corrupt the computation of the
next step, deviate the expected distance to solution, compromise
the �nishing conditions and also the statistical uncertainty, if the
�tting is based on statistics. Although the precision of the subjec-
tive function is assumed to be known by the order of magnitude,
even the mere extrapolation of its uncertainty to these values at
the given di�erential steps is not trivial. The matrix calculations
involved in these procedures are known to have trend to accumulate
the numerical errors, especially if the parameters are correlated or
not quite independent.
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The simplest way of tracing the numerical precision is interval
computations, when each number x is accompanied or even substi-
tuted by the lowest and the largest limits [xl; xr] in which the main
value may oat due to the numerical inaccuracy. These limits are
processed through every arithmetic operation and the call of each
standard function. For example, if xl > 0 and yl > 0, (xy)l = xl �yl.
But if xl > 0 and yr < 0, (xy)l = xr � yl, and so on. There is a
theory of interval computations aimed at minimization and tracing
the rounding errors[12]. In this theory and in the corresponding
programming languages the main or the most probable value is not
watched. We currently prefer to watch it, since it is not necessarily
equal to the medium value of the interval, which can be large and
exaggerated.

Indeed, this estimate usually exaggerates the inaccuracy since it
always assumes the worst case when the operands are anti-correlated.
In particular, this is clearly exposed in operations in which the same
variable appears twice or more: x � x, etc. Of course, the multipli-
cation by itself can be expressed as raising to the second power by
the specially written function which takes into account correlations.
But one should keep in mind that such operations can appear in
an indirect or hidden form. Therefore the manipulations with such
intervals and their interpretation should be carried out with some
caution.

Of course, there is no necessity to create the special program-
ming language for interval computations (to the contrary of what
is advocated in [12]), since interval arithmetic in any variant can be
included in an object-oriented language as especial class with the
overloaded arithmetic operations and algebraic and other mathe-
matical functions. Our version of such class is called DoubleAc. It
manipulates with double precision oating point numbers. Many
calculations during �tting are executed with the objects of this
class. We remark that the class DoubleAc is not complete imple-
mentation of the theory [12]. It has many simpli�cations compared
with this theory.
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4 Di�erential arithmetic

The idea of di�erential arithmetic is borrowed from one of the ex-
amples in [12] and based on the fact that the derivative of the result
of an arithmetic operation applied to two functions of one variable
is expressed via the values and derivatives of these functions taken
alone. This complicated statement, in fact, means well known rules:
(u � v)0 = u0 � v0, (u � v)0 = u0v + uv0, and (u=v)0 = u0=v � uv0=v2.
If we have an arbitrary algebraic expression with operands whose
numerical values are known as well as the numerical values of their
derivatives, we can calculate not only the numerical value of its re-
sult but also the value of derivative of the result. If the operand
is a constant, its derivative is known, it is zero. Similarly, if the
operand is the variable parameter, its derivative is unit. We also
know the derivative of any power of the variable parameter. From
these elements we can compose any algebraic expression. Obviously,
this idea can be extended for the partial derivatives of any order of
multi-parameter functions. This allows to avoid analytical di�eren-
tiation as well as the numerical di�erentiation by �nite di�erences,
but to exploit some third semi-analytical semi-numerical method.
We will identify it by the name \di�erential arithmetic" following
[12], although it is clear that this is not only arithmetic about. By
the similar way one may process any elementary functions: alge-
braic, trigonometric, logarithmic, etc. If F (x) is any elementary
function of one argument, for example, sin, cos etc. , and F 0 de-
notes its derivative relative to the argument, its application to f
gives the following: (F (f))0i = F 0f 0i , (F (f))

00
ij = F 00f 0if

0
j+F 0f 00ij, and

so on. Thus, the derivatives of the result are again expressed via
the derivatives of these functions taken alone.

This method of computing derivatives is especially convenient
if implemented in an object-oriented style. Indeed, we can consider
the function value together with all values of its derivatives as a
single object of a class. We can de�ne the arithmetic operations and
elementary functions for this class as procedures returning objects
of the same class. Obviously, the returned objects should contain
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the function values and derivatives computed according to these
ideas. Then, we can write the ordinary mathematical expressions
and even the total programs operating not with the regular oating
point numbers, but with the objects of such class. In this case the
derivatives of the expressions will be automatically computed as
some by-product of computation of the values of functions.

This approach is implemented in the class TFun. Currently we
have encoded the di�erential arithmetic only up to the second order,
which is the necessary minimum for our purposes.

5 Numerical calculation of derivatives by �-

nite di�erences

The �rst partial derivative is normally computed by

f 0x =
f(x+ h)� f(x� h)

2h
; (1)

where h is di�erential step. If the point x is near the strict boundary
on the left side from it, we use other points and formula:

f 0x =
1:5f(x)� 2f(x� h) + 0:5f(x� 2h)

h
; (2)

Here we assume that the second derivative is more or less constant
and take into account its inuence on the �rst one.

If the second partial derivative is not supplied, but the �rst one
is given, the second one is computed by

f 00xx =
f 0x(x+ h)� f 0x(x� h)

2h
: (3)

The similar formula is used near the strict boundary (the boundary
is to the right side):

f 00xx =
f 0x(x)� f 0x(x� 2h)

2h
: (4)

The point f(x � h) is not calculated in this case, which allows to
reduce the time consumption.
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If the �rst derivative is not provided, the second one is calculated
by the function:

f 00xx =
f(x� h)� 2f(x) + f(x+ h)

h2
; (5)

It is assumed to be constant and determined by the similar formula
for shifted points.

To calculate the second derivatives taken by two di�erent pa-
rameters, we check which �rst derivatives are supplied and use ei-
ther

f 00x1x2(x1; x2) =
f 0x1(x1; x2 + h2)� f 0x1(x1; x2 � h2)

2h2
(6)

or

f 00x1x2(x1; x2) =
f 0x2(x1 + h1; x2)� f 0x2(x1 � h1; x2)

2h1
(7)

The same formulas are used for shifted points.
If none of the �rst derivatives are supplied, we use the function

values:

f 00x1x2(x1; x2) =
1

4h1h2
�

(f(x1 + h1; x2 + h2)� f(x1 � h1; x2 + h2)�

f(x1 + h1; x2 � h2) + f(x1 � h1; x2 � h2)) (8)

The same formula is used for shifted points.
It is seen that for each combination of two parameters we need

to calculate the function in four additional shifted points: x1 � h1
and x2 � h2. We can reduce this number to one, if we use, for
example, the following formula:

f 00x1x2(x1; x2) =
1

h1h2
�

(f(x1 + h1; x2 + h2)� f(x1; x2 + h2)�

f(x1 + h1; x2) + f(x1; x2)) (9)

Here we have only one additional point (x1 + h1; x2 + h2). This
not symmetrical approach can be inaccurate if there are large third
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derivatives. Otherwise, if this approach is acceptable, the user can
assign int DifModelFunction::s_sddpf=1, and this formula will
be used for not restricted case. If any of the three shifted points are
out of the boundary, the program tries other combinations following
the same principle.

In some applications the second derivative can be approximately
computed from the �rst one. The example is minimization of the
sum of squares by a linearization procedure [3, 4]. This method is
implemented in the classes FitStepEventSquare and
FitStepEventSquareInfo. The subjective function should have
the form

f =
X
i

fi =
X
i

�
(yi �mi(~x))

2

�2i
: (10)

We search its maximum at the constant parameters �i. The �rst
derivative of (10) will be

@f

@xj
= 2

X
i

(yi �mi(~x))

�2i
�
@mi(~x)

@xj
: (11)

If we ignore the second derivative of mi(~x) by ~x, then the second
derivative of f is

@2f

@xj@xk
= �2

X
i

1

�2i
�
@mi(~x)

@xj

@mi(~x)

@xk
; (12)

So as not to write a special program and an interface for computing
and transferring m0

i(~x), we use f
0
i which is transferred or computed

by default, if the event information is provided by the user in the
function calc_function_event_detailed(). Then the m0

i(~x) is
restored from (11) and (10):

@2f

@xj@xk
=

1

2

X
i

1

fi
�
@fi
@xj

@fi
@xk

; (13)

6 Maximization of multi-parameter function

Since the maximum of any smooth function of the parameters ~x
coincides with zero of its gradient or the �rst partial derivatives
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~f 0(~x), and behavior of the gradient is controlled by the second par-
tial derivatives or Hessian f 00(~x):

f 00ij(~x0) =

"
@2f(~x)

@xi@xj

#
~x0

; (14)

the maximum will coincide with the solution of an equation:

~f 0(~x) = ~f 0(~x0) + f 00(~x0) � (~x� ~x0) = 0; (15)

provided that the function f(~x) really has maximum and its third
derivatives are everywhere zero. The latter is not necessarily true.
Therefore, even if the function really has maximum, the solution of
(15)

~x� ~x0 = �f 00(~x0)
�1 ~f 0(~x0) (16)

may point to a minimum or just to a stationary point of the corre-
sponding quadratic form, where the function value may be even less
than f(~x0). Therefore the single or repetitive application of (16),
which is sometimes called the method of Newton, may lead to con-
fusing results. To cope with this problem we need �rst to restrict
the step length ~x�~x0 by a maximal allowed value which reects our
expectations or knowledge about the inuence of the higher-order
derivatives and the range at which they manifest themselves. Then,
instead of or in addition to the restricted general solution by (16)
we can apply any variant of the steepest descent (for minimization)
or steepest ascent methods[1]. By their base variant the trajectory
of search is directed along the gradient and propagated until the
function maximum (or minimum) is found. Then the trajectory is
rotated to be along the new gradient, which is perpendicular to the
old one, and the procedure is repeated. To provide synchroniza-
tion we avoid the iterative procedure of searching the maximum
along the gradient, but compute its expected position by the Hes-
sian. The most powerful and sophisticated method is moving along
the gradient by little steps and re-computing the gradient by the
left equation of (15). The move may proceed until some simple
conditions are satis�ed, perhaps, until the total distance travelled
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is less than the maximum allowed step, or the ordered number of
iterations is executed. Then the new function value and deriva-
tives are requested at this end point and the procedure is repeated.
This method allows to take into account the third and higher order
derivatives, if they are supplied by the user, (then, instead of the
left part of (15) we will use the more general form) and to move
exactly by the sharp ridge or valley if they are. The di�erential
arithmetic of the class TFun would allow in principle to compute
the derivative of any order.

Note that these manipulations with the derivatives are not nec-
essary for the case of one parameter function, where we can isolate
the maximum in an interval which will exactly determine the cur-
rent precision. Therefore for the latter problem it is better to use
the class MFMaximum.

6.1 General solution

The general solution by Newton's formula (16) is done by the class
FitStepSquare. The similar algorithm for minimization of the sum
of squares with the second derivatives calculated by (13) is imple-
mented in the class FitStepSquareEvent. However, the latter class
is not currently able to apply functionality of SteepestAscentTFun
(see below).

At the calculations of di�erential steps these methods assume
that the second derivative is not zero and that it is similar by the
order of magnitude at the previous and at the current point. The
di�erential step is calculated to provide the necessary precision of
the diagonal elements of the Hessian matrix and of its inverse ma-
trix, and the precision of the next step. Initially the di�erential
step is o�ered to be approximately by an order of magnitude less
than the previous real step. If the considerations given above dic-
tate increasing the di�erential step length, it is also required that
the di�erential step should not be larger than the �nal accuracy.
Everything is controlled by the parameters which can be changed
by the user.

The constructors of these classes �rst calculate the next step
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by (16) and restrict it by the maximal allowed step. The latter is
possible by two di�erent ways: separately by components and by
proportional reducing. The �rst way changes the direction of step,
while the second one preserves it. The both steps are then restricted
by boundaries through the call of AbsBoundCond::restrict(...).
Here only one type of restriction is provided, the reducing by com-
ponents, since the proportional reducing may result in zero length
step. This does not support travelling along the boundary which is
necessary if the the function increases to the outside direction.

Then the program evaluates the expected function values for
one or two di�erent steps by the Taylor expansion

fexp = f(~x0) + ~f 0(~x0) � (~x� ~x0) +
1

2
(~x� ~x0)

>f 00(~x0)(~x� ~x0) (17)

and chooses the step related to the largest value. If this value is
less than the current one f(~x0), or if the actual function value f(~x)
obtained at this step is less than f(~x0), the program abandons the
Newton's formula and applies the integration of the simultaneous
equations

d~x(l)

dl
= ~f 0(~x0) + f 00(~x0)(~x(l)� ~x0); (18)

where l means the trajectory length. This is performed in the class
SteepestAscentTFun and gives the steepest ascent trajectory by
the Taylor series. Of course, this procedure is computationally
worth-while only if the subjective function is computed much longer
than its Taylor series. The integration is performed until the maxi-
mal step is accumulated by any one parameter or until the ordered
number of steps is done (currently 100) with lengths

0:2 � ~h = 0:2 �
~f 0(~x0)j~f

0(~x0)j
2

j~f 0>(~x0)f 00(~x0)~f 0(~x0)j
: (19)

j~hj is the expected distance to either the maximum or minimum of
the quadratic form along or counter the direction of the gradient,
see the next section. The program memorizes not only the end point
of this trajectory, but also all its previous points. This information
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allows to recede by the trajectory if the function value at the end
point appears less than f(~x0). If the investigated point is point
number n, the new considered point will be just point number n=4
unless the integer part of n=4 is already equal to 0. In the latter
case the correction is declined.

This method is the most precise. Its rating is assumed to be
equal to the expected function value fexp.

For the case of many parameters this method is the only one
which takes into account the correlations between the parameters
and only its next step evaluates correctly the real precision. There-
fore for many parameters only this method is allowed to �nish the
iterations. The conditions of �nishing are the following:

� The class SteepestAscentTFun is not used for obtaining the
current step.

� The current and previous steps are less by components than
the required accuracy
DinLinArr<double> FitModelFunction::accuracy.

� The new function value at the end of the current step is larger
than the function value at the original point minus its absolute
value multiplied by
double FitModelFunction::rel_accuracy_y.

� The diagonal elements of the error matrix f 00(~x0)
�1 are nega-

tive (to avoid considering the next step and long computations
of the matrix determinants).

� The signs of the main minors of the Hessian indicate that the
corresponding quadratic form is negatively-determined.

6.2 Steepest ascent with Hessian

Originally, the steepest descent method is proposed for minimiza-
tion at the cases when either the Hessian is not known or the appli-
cation of the Newton's formula leads to confusing results. However,
the numerical calculation of the Hessian is not more diÆcult than
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computing the gradient (both by di�erential arithmetic and by �-
nite di�erences). If the Newton's formula fails, we can use the inte-
gration of (18). Nevertheless, if the subjective function is computed
much faster than its Taylor expansion, it is reasonable to integrate
the subject function itself. Moreover, if the Hessian is computed
not quite precisely, it is reasonable to make a trial according with
this method together with the trial by the previous general method
so as to choose the best step. Although our modi�cation uses the
Hessian, its inaccuracy a�ects only the step length and does not
a�ect its direction. If, nevertheless, this method fails as well (the
new function value is less than the old one), we can always correct
(reduce) the step length by quite intelligent way. Also this method
is more natural for one-parameter functions. Therefore in the latter
case it is used instead of the previous one, while for many-parameter
functions it is used as optional.

The original method consists in making steps along the func-
tion gradient exactly or approximately to the maximum appeared
along this direction. As we have already mentioned, to provide
synchronization we avoid the iterative search of this maximum, but
evaluate its position by the current Hessian. We denote by ~u the
unit vector along the gradient ~u = ~f 0(~x0)=j~f

0(~x0)j. If to put the
beginning of this vector in the point ~x0, the Taylor expansion T
will vary along this vector according to

T (r) = f(~x0) + r ~f 0>(~x0)~u+
1

2
r2~u>f 00(~x0)~u: (20)

Its derivative T 0r(r) has zero at the point

r = �
j~f 0(~x0)j

~u>f 00(~x0)~u
= �

j~f 0(~x0)j
3

~f 0>(~x0)f 00(~x0)~f 0(~x0)
: (21)

Whether this is the maximum or minimum of T (r) depends on the
sign of the denominator. Normally it should be negative, and the
value of r is positive. Otherwise, r will point to the minimum and
there is no any sense to make such step. But we may anyway try
step along the gradient with the same length jrj assuming that we
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approach to the maximum. Owing to the reasons discussed in [1],
it is reasonable to reduce this step slightly, by a factor of 0.9 or so.
Therefore the searched step is

~h = 0:9 �
~f 0(~x0)j~f

0(~x0)j
2

j~f 0>(~x0)f 00(~x0)~f 0(~x0)j
: (22)

Similarly to the previous method, this step is restricted by the
maximum allowed step and by the boundaries. But since the idea
is to step along the gradient, the changing of the step direction is
considered as not desirable action. Therefore if the step reduced
proportionally is not zero, the program uses only it. Otherwise it
uses the step reduced by the components.

The expected function is calculated by (17). This method is usu-
ally precise and its rating is assumed equal to the expected function.

If the actual value of the function at the end point is found to
be less than the initial f(~x0), we can correct the step by reducing
it. The program does this by drawing an imaginary parabola by
the values of the function and gradient at the initial point and by
the value of the function at the end point. The maximum of the
parabola gives the next approximation.

The �nishing conditions are similar to the previous method ex-
cept the last condition, which is substituted by the demand of the
negative denominator in (21).

This method is implemented in the class FitStepModSquare.

6.3 Steepest ascent according to variation of gradient

This method is designed for the cases when the Hessian is not avail-
able. Since it is usually available, this method is utilized as one more
optional generator of the trials useful for the functions with erratic
behaviour. For the regular functions this method is far less eÆcient
with respect to the previous ones.

This is also a variant of the steepest ascent method. But to
calculate the step length we take here into account the di�erence of
the gradients obtained at the previous and at the current iteration.

27



To explain this method we �rst consider the 1-parameter func-
tion f(x) with the Taylor expansion around the point xn obtained
at iteration number n:

f(x) � f(xn) + f 0(xn)(x� xn) +
1

2
f 00(xn)(x� xn)

2: (23)

If to substitute the second derivative by

f 00(xn) �
f 0(xn)� f 0(xn�1)

xn � xn�1

; (24)

the zero of the �rst derivative will appear at the distance

h = x� xn = �

�
f 0(xn)� f 0(xn�1)

xn � xn�1

��1

� f 0(xn): (25)

We generalize it to many parameters by

~h = �k �

 
j~f 0(~xn)� ~f 0(~xn�1)j

j~xn � ~xn�1j

!�1

� ~f 0(~xn); (26)

where k is the parameter which should indirectly take into account
the angle between the function gradients. This method gives more
or less good approximation if ~f 0(~xn) is parallel or anti-parallel to
~f 0(~xn�1). But if there is a large angle between them, it is better
to reduce the step. Therefore we multiply it by the absolute value
of the cosines of the angle between the last step and the current
gradient:

k = max

 
0:1;

�����
~hn�1

j~hn�1j
�
~f 0(~xn)

j~f 0(~xn)

�����
!
: (27)

By this way we reduce the confusing straggling and make the steps
more gradually approaching the maximum. Another applied way to
smooth the erratic behavior of this method is the use of a variable
which follows the variation of the step length but always remains
a little bit larger than the actual step length and resists its sharp
increase. This variable has sense of the current maximal allowed
step length. In the occasion when the o�ered step length is sharply
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increased and appears more than the current value of this variable,
the latter forces its reduction to the currently allowed maximum,
although this variable itself becomes a little bit larger. Of course,
the step is also restricted by the maximal allowed step determined
by the user and by the boundaries.

The expected function is evaluated by

f(~x)exp = f(~xn) + jf 0(~xn)jj(~hn)j+
1

2

 
j~f 0(~xn)� ~f 0(~xn�1)j

j~xn � ~xn�1j

!
� ~h2n:

(28)
The method's rating is calculated by

R = 0:5f(~xn) + 0:5f(~x)exp: (29)

If the new function value is less than the current one, the cor-
rection of the step is performed similarly with the previous method.

This method is not precise and it is not considered as �nishing.
This method is implemented in the class FitStepDiagra.

A Safe use of pointers

The pointers play the principal role in object-oriented programming
in C++. Simultaneously they represent the most unreliable element
of the language. The manipulations with the pointers do not auto-
matically force adequate manipulations with addressed objects and
vice versa. If the pointer is used for establishing certain relations
between objects, its inertness can eventually corrupt the program.
However, it turns out that the logic of these relationships almost
always falls into one of two categories, and both of them may be
determined and automated by the well protected template and reg-
ular classes. Although the use of such classes gives computer some
additional work, it reduces time of programming, provides certain
scalability and re-use of the program, and, hence, seems reasonable.

Shortly, the pointers support such relations between the objects
when one object can access or use another object but the latter is
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not the physical or logical component of the �rst. Another appli-
cation of the pointers is the support of polymorphism, when one
object accesses another one whose type is not completely deter-
mined (we mean handling the derived types with virtual functions;
the term polymorphism is sometimes used for other purposes, but
here we use the meaning suggested in [13]). What is missed is the
support of polymorphism for the logical components, although such
relation occurs very frequently.

Moreover, even the supported relation, the reference to the alien
object, is not supported in total and prone to programming errors,
since the deletion of the addressed object does not result in an-
nulling or clearing the pointer and in denying the further access to
it. The attempt to simulate the relation of logical inclusion fre-
quently leads to errors by the same reason. In general, any regular
pointer appearing as the class member of an application class (ex-
cept well debugged accessory library classes) means a programming
error, either now or in future. This makes the result of computing
random, depending on whether the hardware detects \segmentation
fault" or what will be found at the place of the deleted object.

This motivates substitution of the regular pointers, when they
are used as the class members, by the objects of template classes.
Since we have only two main types of relations: the reference to
an alien object and the logical inclusion, we need just two base
templates simulating these relations. As follows from the discus-
sion above, the �rst one should just mimic the regular pointer and
protect it from the errors appearing at careless manipulations with
the addressed object. This type is called the protected pointer and
denoted by ProtPtr<>. The addressed object should know the ad-
dresses of all protected pointers to it and clear them at its deletion.
As an optional feature it can clear them at the substitution of itself
by another object through the operator of assignment. Technically,
the class of the addressed object should be derived from a special
base class called RegProtPtr, \Register of Protected Pointers".

The second type should support the logical inclusion of one
object into another. If the pointer is copied or deleted either to-
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gether with the object to which it belongs or separately, this ac-
tion should force similar operation with the addressed object. By
the other words, this pointer should control the addressed object.
Technically, such object should be allocated in the free memory. To
provide correct copying of the objects of derived classes each such
class should de�ne the same virtual member function copy(void)

which merely allocates the new exemplar of the object, a copy of
itself, in the free memory. The controlling pointer is denoted by
AutoCont<>.

The protected pointers do not have signi�cant additional func-
tionality with respect to the regular pointers and perhaps they do
not need special notation in the class diagrams. The controlling
pointers need a special notation. They are marked by the open
crossed box at the side of the addressed object. Thus, if the con-
nection is marked by the closed circle at one end and by the closed
box at the other end, this means that the object of the class marked
by the box is the member of the object of the class marked by the
circle. The same with the open box at the other end means, that
the object with the circle knows only the address of the object with
the box, but does not control it. The intermediate crossed open
box means that the addressed object is logically the member of the
object with the circle and is controlled by it. In the two latter cases
the actual type of the addressed object may be either that which is
denoted, or any derived from it.

Author thanks A. V. Kravtsov for reading the draft of this text
and for useful comments on it.
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