322 research outputs found

    Verification of Receiver Equalization by Integrating Dataflow Simulation and Physical Channels

    Get PDF
    This thesis combines Keysight’s SystemVue software with a Vector Signal Analyzer (VSA) and Vector Signal Generator (VSG) to test receiver equalization schemes over physical channels. The testing setup, “Equalization Verification,” is intended to be able to evaluate any equalization scheme over any physical channel, and a decision-directed feed-forward LMS equalizer is used as an example. The decision-directed feed-forward LMS equalizer is shown to decrease the BER from 10-2 to 10-3 (average of all trials) over a CAT7 and CAT6A cable, both simulated and physical, for 1GHz and 2GHz carrier, and 80MHz data rate. A wireless channel, 2.4GHz Dipole Antenna, is also tested to show that the addition of the equalization scheme decreases BER from 10-5 to less than 10-5. Then the simulation and equalization parameters (LMS step size, PRBS, etc.) are changed to further verify the equalization scheme. The simulated channel BER results do not always match the physical channel BER results, but the equalization scheme does decrease BER for both wired and wireless channels. Then transistor-based equalization model is created using both HDL SystemVue components and blocks easily implemented by transistors. The model is then verified using HDL, Spice, and SystemVue simulation. Overall this thesis accomplishes its goal of creating a testing setup, Equalization Verification, to show that adding a given simulated equalization scheme in SystemVue can improve the quality of the link, by decreasing BER by at least an order of magnitude, over a specific physical channel

    A cost effectiveness analysis of the preferred antidotes for acute paracetamol poisoning patients in Sri Lanka

    Get PDF
    Background: Acute paracetamol poisoning is a rapidly increasing problem in Sri Lanka. The antidotes are expensive and yet no health economic evaluation has been done on the therapy for acute paracetamol poisoning in the developing world. The aim of this study is to determine the cost effectiveness of using N-acetylcysteine over methionine in the management of acute paracetamol poisoning in Sri Lanka. Methods:Economic analysis was applied using public healthcare system payer perspective. Costs were obtained from a series of patients admitted to the National Hospital of Sri Lanka with a history of acute paracetamol overdose. Evidence on effectiveness was obtained from a systematic review of the literature. Death due to hepatotoxicity was used as the primary outcome of interest. Analysis and development of decision tree models was done using Tree Age Pro 2008. Results: An affordable treatment threshold of Sri Lankan rupees 1,537,120/death prevented was set from the expected years of productive life gained and the average contribution to GDP. A cost-minimisation analysis was appropriate for patients presenting within 10 hours and methionine was the least costly antidote. For patients presenting 10-24 hours after poisoning, n-acetylcysteine was more effective and the incremental cost effectiveness ratio of Sri Lankan rupees 316,182/life saved was well under the threshold. One-way and multi-way sensitivity analysis also supported methionine for patients treated within 10 hours and n-acetylcysteine for patients treated within 10-24 hours as preferred antidotes.Conclusions: Post ingestion time is an important determinant of preferred antidotal therapy for acute paracetamol poisoning patients in Sri Lanka. Using n-acetylcysteine in all patients is not cost effective. On economic grounds, methionine should become the preferred antidote for Sri Lankan patients treated within 10 hours of the acute ingestion and n-acetylcysteine should continue to be given to patients treated within 10-24 hours

    Scottish and Newcastle antiemetic pre-treatment for paracetamol poisoning study (SNAP)

    Get PDF
    BACKGROUND: Paracetamol (acetaminophen) poisoning remains the commonest cause of acute liver injury in Europe and North America. The intravenous (IV) N-acetylcysteine (NAC) regimen introduced in the 1970s has continued effectively unchanged. This involves 3 different infusion regimens (dose and time) lasting over 20 hours. The same weight-related dose of NAC is used irrespective of paracetamol dose. Complications include frequent nausea and vomiting, anaphylactoid reactions and dosing errors. We designed a randomised controlled study investigating the efficacy of antiemetic pre-treatment (ondansetron) using standard NAC and a modified, shorter, regimen. METHODS/DESIGN: We designed a double-blind trial using a 2 × 2 factorial design involving four parallel groups. Pre-treatment with ondansetron 4 mg IV was compared against placebo on nausea and vomiting following the standard (20.25 h) regimen, or a novel 12 h NAC regimen in paracetamol poisoning. Each delivered 300 mg/kg bodyweight NAC. Randomisation was stratified on: paracetamol dose, perceived risk factors, and time to presentation. The primary outcome was the incidence of nausea and vomiting following NAC. In addition the frequency of anaphylactoid reactions and end of treatment liver function documented. Where clinically necessary further doses of NAC were administered as per standard UK protocols at the end of the first antidote course. DISCUSSION: This study is primarily designed to test the efficacy of prophylactic anti-emetic therapy with ondansetron, but is the first attempt to formally examine new methods of administering IV NAC in paracetamol overdose. We anticipate, from volunteer studies, that nausea and vomiting will be less frequent with the new NAC regimen. In addition as anaphylactoid response appears related to plasma concentrations of both NAC and paracetamol anaphylactoid reactions should be less likely. This study is not powered to assess the relative efficacy of the two NAC regimens, however it will give useful information to power future studies. As the first formal randomised clinical trial in this patient group in over 30 years this study will also provide information to support further studies in patients in paracetamol overdose, particularly, when linked with modern novel biomarkers of liver damage, patients at different toxicity risk. TRIAL REGISTRATION: EudraCT number 2009-017800-10, ClinicalTrials.gov IdentifierNCT0105027

    Uneven spread of cis- and trans-editing aminoacyl-tRNA synthetase domains within translational compartments of P. falciparum

    Get PDF
    Accuracy of aminoacylation is dependent on maintaining fidelity during attachment of amino acids to cognate tRNAs. Cis- and trans-editing protein factors impose quality control during protein translation, and 8 of 36 Plasmodium falciparum aminoacyl-tRNA synthetase (aaRS) assemblies contain canonical putative editing modules. Based on expression and localization profiles of these 8 aaRSs, we propose an asymmetric distribution between the parasite cytoplasm and its apicoplast of putative editing-domain containing aaRSs. We also show that the single copy alanyl- and threonyl-tRNA synthetases are dually targeted to parasite cytoplasm and apicoplast. This bipolar presence of two unique synthetases presents opportunity for inhibitor targeting their aminoacylation and editing activities in twin parasite compartments. We used this approach to identify specific inhibitors against the alanyl- and threonyl-tRNA synthetases. Further development of such inhibitors may lead to anti-parasitics which simultaneously block protein translation in two key parasite organelles, a strategy of wider applicability for pathogen control

    Attitudes to and management of fertility among primary health care physicians in Turkey: An epidemiological study

    Get PDF
    BACKGROUND: The subject of infertility has taken its place in the health sector at the top level. Since primary health care services are insufficient, most people, especially women, keep on suffering from it all over the world, namely in underdeveloped or developing countries. The aim of this study was to determine primary care physicians' opinions about the approach to infertility cases and their place within primary health care services (PHCSs). METHODS: The study was conducted between October 2003 and April 2004. The study group comprised 748 physicians working in PHCSs. They were asked to fill in a questionnaire with questions pertaining to infertility support, laboratory and treatment algorithms, as well as the demographic characteristics. The data was evaluated using the chi square test, percentage rates and a logistic regression model. RESULTS: The multivariate analyses showed that having a previous interest in infertility and having worked for a postgraduate period of between 5–9 years and ≥10 years were the variables that most positively influenced them in their approach to cases of infertility (p < 0.05, each one). Just 28.7% of the physicians indicated that they believed cases of infertility could be evaluated at the primary care level. The most frequently proposed reason for indicating 'difficulty in practice' (n = 533) was inadequate provision of equipment in PHCSs (55.7%). The physicians reported that they were able to perform most of the supportive treatments and proposals (between 64.6%–87.7%). The most requested laboratory investigations were the instruction of patients in taking basal body temperatures and semen analysis (89.7% and 88.7%, respectively). The most preferential course of treatment was that of sexually transmitted diseases (95.5%). CONCLUSION: It is clear that not enough importance is attached to the provision of care to infertile couples within PHCSs. This leads us to conclude that an integration of infertility services in primary care would be appropriate after strengthening the PHCSs

    Marine Actinomycetes: A New Source of Compounds against the Human Malaria Parasite

    Get PDF
    Background Malaria continues to be a devastating parasitic disease that causes the death of 2 million individuals annually. The increase in multi-drug resistance together with the absence of an efficient vaccine hastens the need for speedy and comprehensive antimalarial drug discovery and development. Throughout history, traditional herbal remedies or natural products have been a reliable source of antimalarial agents, e.g. quinine and artemisinin. Today, one emerging source of small molecule drug leads is the world's oceans. Included among the source of marine natural products are marine microorganisms such as the recently described actinomycete. Members of the genus Salinispora have yielded a wealth of new secondary metabolites including salinosporamide A, a molecule currently advancing through clinical trials as an anticancer agent. Because of the biological activity of metabolites being isolated from marine microorganisms, our group became interested in exploring the potential efficacy of these compounds against the malaria parasite.[br/] Methods We screened 80 bacterial crude extracts for their activity against malaria growth. We established that the pure compound, salinosporamide A, produced by the marine actinomycete, Salinispora tropica, shows strong inhibitory activity against the erythrocytic stages of the parasite cycle. Biochemical experiments support the likely inhibition of the parasite 20S proteasome. Crystal structure modeling of salinosporamide A and the parasite catalytic 20S subunit further confirm this hypothesis. Ultimately we showed that salinosporamide A protected mice against deadly malaria infection when administered at an extremely low dosage.[br/] Conclusion These findings underline the potential of secondary metabolites, derived from marine microorganisms, to inhibit Plasmodium growth. More specifically, we highlight the effect of proteasome inhibitors such as salinosporamide A on in vitro and in vivo parasite development. Salinosporamide A (NPI-0052) now being advanced to phase I trials for the treatment of refractory multiple myeloma will need to be further explored to evaluate the safety profile for its use against malaria

    Validation of Plasmodium falciparum dUTPase as the target of 5'-tritylated deoxyuridine analogues with anti-malarial activity

    Get PDF
    BACKGROUND: Malaria remains as a major global problem, being one of the infectious diseases that engender highest mortality across the world. Due to the appearance of resistance and the lack of an effective vaccine, the search of novel anti-malarials is required. Deoxyuridine 5'-triphosphate nucleotido-hydrolase (dUTPase) is responsible for the hydrolysis of dUTP to dUMP within the parasite and has been proposed as an essential step in pyrimidine metabolism by providing dUMP for thymidylate biosynthesis. In this work, efforts to validate dUTPase as a drug target in Plasmodium falciparum are reported. METHODS: To investigate the role of PfdUTPase in cell survival different strategies to generate knockout mutants were used. For validation of PfdUTPase as the intracellular target of four inhibitors of the enzyme, mutants overexpressing PfdUTPase and HsdUTPase were created and the IC50 for each cell line with each compound was determined. The effect of these compounds on dUTP and dTTP levels from P. falciparum was measured using a DNA polymerase assay. Detailed localization studies by indirect immunofluorescence microscopy and live cell imaging were also performed using a cell line overexpressing a Pfdut-GFP fusion protein. RESULTS:Different attempts of disruption of the dut gene of P. falciparum were unsuccessful while a 3' replacement construct could recombine correctly in the locus suggesting that the enzyme is essential. The four 5'-tritylated deoxyuridine analogues described are potent inhibitors of the P. falciparum dUTPase and exhibit antiplasmodial activity. Overexpression of the Plasmodium and human enzymes conferred resistance against selective compounds, providing chemical validation of the target and confirming that indeed dUTPase inhibition is involved in anti-malarial activity. In addition, incubation with these inhibitors was associated with a depletion of the dTTP pool corroborating the central role of dUTPase in dTTP synthesis. PfdUTPase is mainly localized in the cytosol. CONCLUSION: These results strongly confirm the pivotal and essential role of dUTPase in pyrimidine biosynthesis of P. falciparum intraerythrocytic stages

    High content live cell imaging for the discovery of new antimalarial marine natural products

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human malaria parasite remains a burden in developing nations. It is responsible for up to one million deaths a year, a number that could rise due to increasing multi-drug resistance to all antimalarial drugs currently available. Therefore, there is an urgent need for the discovery of new drug therapies. Recently, our laboratory developed a simple one-step fluorescence-based live cell-imaging assay to integrate the complex biology of the human malaria parasite into drug discovery. Here we used our newly developed live cell-imaging platform to discover novel marine natural products and their cellular phenotypic effects against the most lethal malaria parasite, <it>Plasmodium falciparum</it>.</p> <p>Methods</p> <p>A high content live cell imaging platform was used to screen marine extracts effects on malaria. Parasites were grown <it>in vitro </it>in the presence of extracts, stained with RNA sensitive dye, and imaged at timed intervals with the BD Pathway HT automated confocal microscope.</p> <p>Results</p> <p>Image analysis validated our new methodology at a larger scale level and revealed potential antimalarial activity of selected extracts with a minimal cytotoxic effect on host red blood cells. To further validate our assay, we investigated parasite's phenotypes when incubated with the purified bioactive natural product bromophycolide A. We show that bromophycolide A has a strong and specific morphological effect on parasites, similar to the ones observed from the initial extracts.</p> <p>Conclusion</p> <p>Collectively, our results show that high-content live cell-imaging (HCLCI) can be used to screen chemical libraries and identify parasite specific inhibitors with limited host cytotoxic effects. All together we provide new leads for the discovery of novel antimalarials.</p

    Identification, Design and Biological Evaluation of Bisaryl Quinolones Targeting Plasmodium falciparum Type II NADH:Quinone Oxidoreductase (PfNDH2)

    Get PDF
    A program was undertaken to identify hit compounds against NADH:ubiquinone oxidoreductase (PfNDH2), a dehydrogenase of the mitochondrial electron transport chain of the malaria parasite Plasmodium falciparum. PfNDH2 has only one known inhibitor, hydroxy-2-dodecyl-4-(1H)-quinolone (HDQ), and this was used along with a range of chemoinformatics methods in the rational selection of 17 000 compounds for high-throughput screening. Twelve distinct chemotypes were identified and briefly examined leading to the selection of the quinolone core as the key target for structure-activity relationship (SAR) development. Extensive structural exploration led to the selection of 2-bisaryl 3-methyl quinolones as a series for further biological evaluation. The lead compound within this series 7-chloro-3-methyl-2-(4-(4-(trifluoromethoxy)benzyl)phenyl)quinolin-4(1H)-one (CK-2-68) has antimalarial activity against the 3D7 strain of P. falciparum of 36 nM, is selective for PfNDH2 over other respiratory enzymes (inhibitory IC(50) against PfNDH2 of 16 nM), and demonstrates low cytotoxicity and high metabolic stability in the presence of human liver microsomes. This lead compound and its phosphate pro-drug have potent in vivo antimalarial activity after oral administration, consistent with the target product profile of a drug for the treatment of uncomplicated malaria. Other quinolones presented (e.g., 6d, 6f, 14e) have the capacity to inhibit both PfNDH2 and P. falciparum cytochrome bc(1), and studies to determine the potential advantage of this dual-targeting effect are in progress
    corecore