12 research outputs found

    : Maurocalcine transduction into cells

    Get PDF
    International audienceMaurocalcine (MCa) is a 33-amino-acid residue peptide toxin isolated from the scorpion Scorpio maurus palmatus. External application of MCa to cultured myotubes is known to produce Ca2+ release from intracellular stores. MCa binds directly to the skeletal muscle isoform of the ryanodine receptor, an intracellular channel target of the endoplasmic reticulum, and induces long lasting channel openings in a mode of smaller conductance. Here we investigated the way MCa proceeds to cross biological membranes to reach its target. A biotinylated derivative of MCa was produced (MCa(b)) and complexed with a fluorescent indicator (streptavidine-cyanine 3) to follow the cell penetration of the toxin. The toxin complex efficiently penetrated into various cell types without requiring metabolic energy (low temperature) or implicating an endocytosis mechanism. MCa appeared to share the same features as the so-called cell-penetrating peptides. Our results provide evidence that MCa has the ability to act as a molecular carrier and to cross cell membranes in a rapid manner (1-2 min), making this toxin the first demonstrated example of a scorpion toxin that translocates into cells

    Junctate is a key element in calcium entry induced by activation of InsP3 receptors and/or calcium store depletion

    Get PDF
    In many cell types agonist-receptor activation leads to a rapid and transient release of Ca2+ from intracellular stores via activation of inositol 1,4,5 trisphosphate (InsP3) receptors (InsP3Rs). Stimulated cells activate store- or receptor-operated calcium channels localized in the plasma membrane, allowing entry of extracellular calcium into the cytoplasm, and thus replenishment of intracellular calcium stores. Calcium entry must be finely regulated in order to prevent an excessive intracellular calcium increase. Junctate, an integral calcium binding protein of endo(sarco)plasmic reticulum membrane, (a) induces and/or stabilizes peripheral couplings between the ER and the plasma membrane, and (b) forms a supramolecular complex with the InsP3R and the canonical transient receptor potential protein (TRPC) 3 calcium entry channel. The full-length protein modulates both agonist-induced and store depletion–induced calcium entry, whereas its NH2 terminus affects receptor-activated calcium entry. RNA interference to deplete cells of endogenous junctate, knocked down both agonist-activated calcium release from intracellular stores and calcium entry via TRPC3. These results demonstrate that junctate is a new protein involved in calcium homeostasis in eukaryotic cells

    Triadins are not triad-specific proteins: two new skeletal muscle triadins possibly involved in the architecture of sarcoplasmic reticulum.

    Get PDF
    International audienceWe have cloned two new triadin isoforms from rat skeletal muscle, Trisk 49 and Trisk 32, which were named according to their theoretical molecular masses (49 and 32 kDa, respectively). Specific antibodies directed against each protein were produced to characterize both new triadins. Both are expressed in adult rat skeletal muscle, and their expression in slow twitch muscle is lower than that in fast twitch muscle. Using double immunofluorescent labeling, the localization of these two triadins was studied in comparison to well-characterized proteins such as ryanodine receptor, calsequestrin, desmin, Ca(2+)-ATPase, and titin. None of these two triadins are localized within the rat skeletal muscle triad. Both are instead found in different parts of the longitudinal sarcoplasmic reticulum. We attempted to identify partners for each isoform: neither is associated with ryanodine receptor; Trisk 49 could be associated with titin or another sarcomeric protein; and Trisk 32 could be associated with IP(3) receptor. These results open further fields of research concerning the functions of these two proteins; in particular, they could be involved in the set up and maintenance of a precise sarcoplasmic reticulum structure

    Triadin (Trisk 95) overexpression blocks excitation-contraction coupling in rat skeletal myotubes.

    Get PDF
    International audienceTo identify the function of triadin in skeletal muscle, adenovirus-mediated overexpression of Trisk 95 or Trisk 51, the two major skeletal muscle isoforms, was induced in rat skeletal muscle primary cultures, and the physiological behavior of the modified cells was analyzed. Overexpression did not modify the expression level of their protein partners ryanodine receptor, dihydropyridine receptor, and the other triadin. Caffeine-induced calcium release was also unaffected by triadin overexpression. Nevertheless, in the absence of extracellular calcium, depolarization-induced calcium release was almost abolished in Trisk 95 overexpressing myotubes (T95 myotubes), and not modified in Trisk 51 overexpressing myotubes (T51 myotubes). This was not because of a modification of dihydropyridine receptors, as depolarization in presence of external calcium still induced a calcium release, and the activation curve of dihydropyridine receptor was unchanged, in both T95 and T51 myotubes. The calcium release complex was also maintained in T95 myotubes as Trisk 95, ryanodine receptor, dihydropyridine receptor, and Trisk 51 were still co-localized. The effect of Trisk 95 overexpression on depolarization-induced calcium release was reversed by a simultaneous infection with an antisense Trisk 95 adenovirus, indicating the specificity of this effect. Thus, the level of Trisk 95 and not Trisk 51 is important on regulating the calcium release complex, and an excess of this protein can lead to an inhibition of the physiological function of the complex
    corecore