886 research outputs found

    Cross-linked cationic diblock copolymer worms are superflocculants for micrometer-sized silica particles

    Get PDF
    A series of linear cationic diblock copolymer nanoparticles are prepared by polymerization-induced self-assembly (PISA) via reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a binary mixture of non-ionic and cationic macromolecular RAFT agents, namely poly(ethylene oxide) (PEO113, Mn = 4400 g mol−1; Mw/Mn = 1.08) and poly([2-(methacryloyloxy)ethyl]trimethylammonium chloride) (PQDMA125, Mn = 31 800 g mol−1, Mw/Mn = 1.19). A detailed phase diagram was constructed to determine the maximum amount of PQDMA125 stabilizer block that could be incorporated while still allowing access to a pure worm copolymer morphology. Aqueous electrophoresis studies indicated that zeta potentials of +35 mV could be achieved for such cationic worms over a wide pH range. Core cross-linked worms were prepared via statistical copolymerization of glycidyl methacrylate (GlyMA) with HPMA using a slightly modified PISA formulation, followed by reacting the epoxy groups of the GlyMA residues located within the worm cores with 3-aminopropyl triethoxysilane (APTES), and concomitant hydrolysis/condensation of the pendent silanol groups with the secondary alcohol on the HPMA residues. TEM and DLS studies confirmed that such core cross-linked cationic worms remained colloidally stable when challenged with either excess methanol or a cationic surfactant. These cross-linked cationic worms are shown to be much more effective bridging flocculants for 1.0 μm silica particles at pH 9 than the corresponding linear cationic worms (and also various commercial high molecular weight water-soluble polymers.). Laser diffraction studies indicated silica aggregates of around 25–28 μm diameter when using the former worms but only 3–5 μm diameter when employing the latter worms. Moreover, SEM studies confirmed that the cross-linked worms remained intact after their adsorption onto the silica particles, whereas the much more delicate linear worms underwent fragmentation under the same conditions. Similar results were obtained with 4 μm silica particles

    Les manifestations violentes

    Get PDF
    Abstract. An automatic human shape-motion analysis method based on a fusion architecture is proposed for human action recognition in videos. Robust shape-motion features are extracted from human points detection and tracking. The features are combined within the Transferable Belief Model (TBM) framework for action recognition. The TBMbased modelling and fusion process allows to take into account imprecision, uncertainty and conflict inherent to the features. Action recognition is performed by a multilevel analysis. The sequencing is exploited for feedback information extraction in order to improve tracking results. The system is tested on real videos of athletics meetings to recognize four types of jumps: high jump, pole vault, triple jump and long jump.

    Modality, Potentiality and Contradiction in Quantum Mechanics

    Get PDF
    In [11], Newton da Costa together with the author of this paper argued in favor of the possibility to consider quantum superpositions in terms of a paraconsistent approach. We claimed that, even though most interpretations of quantum mechanics (QM) attempt to escape contradictions, there are many hints that indicate it could be worth while to engage in a research of this kind. Recently, Arenhart and Krause [1, 2, 3] have raised several arguments against this approach and claimed that, taking into account the square of opposition, quantum superpositions are better understood in terms of contrariety propositions rather than contradictory propositions. In [17] we defended the Paraconsistent Approach to Quantum Superpositions (PAQS) and provided arguments in favor of its development. In the present paper we attempt to analyze the meanings of modality, potentiality and contradiction in QM, and provide further arguments of why the PAQS is better suited, than the Contrariety Approach to Quantum Superpositions (CAQS) proposed by Arenhart and Krause, to face the interpretational questions that quantum technology is forcing us to consider.Comment: Published in: New Directions in Paraconsistent Logic, J-Y B\'eziau M. Chakraborty & S. Dutta (Eds.), Springer, in press. arXiv admin note: text overlap with arXiv:1404.518

    Evidential Bagging: Combining Heterogeneous Classifiers in the Belief Functions Framework

    Get PDF
    International audienceIn machine learning, Ensemble Learning methodologies are known to improve predictive accuracy and robustness. They consist in the learning of many classifiers that produce outputs which are finally combined according to different techniques. Bagging, or Bootstrap Aggre-gating, is one of the most famous Ensemble methodologies and is usually applied to the same classification base algorithm, i.e. the same type of classifier is learnt multiple times on bootstrapped versions of the initial learning dataset. In this paper, we propose a bagging methodology that involves different types of classifier. Classifiers' probabilist outputs are used to build mass functions which are further combined within the belief functions framework. Three different ways of building mass functions are proposed; preliminary experiments on benchmark datasets showing the relevancy of the approach are presented

    Regularization of point vortices for the Euler equation in dimension two

    Full text link
    In this paper, we construct stationary classical solutions of the incompressible Euler equation approximating singular stationary solutions of this equation. This procedure is carried out by constructing solutions to the following elliptic problem [ -\ep^2 \Delta u=(u-q-\frac{\kappa}{2\pi}\ln\frac{1}{\ep})_+^p, \quad & x\in\Omega, u=0, \quad & x\in\partial\Omega, ] where p>1p>1, ΩR2\Omega\subset\mathbb{R}^2 is a bounded domain, qq is a harmonic function. We showed that if Ω\Omega is simply-connected smooth domain, then for any given non-degenerate critical point of Kirchhoff-Routh function W(x1,...,xm)\mathcal{W}(x_1,...,x_m) with the same strength κ>0\kappa>0, there is a stationary classical solution approximating stationary mm points vortex solution of incompressible Euler equations with vorticity mκm\kappa. Existence and asymptotic behavior of single point non-vanishing vortex solutions were studied by D. Smets and J. Van Schaftingen (2010).Comment: 32page

    The opposite of Dante's hell? The transfer of ideas for social housing at international congresses in the 1850s–1860s

    Get PDF
    With the advent of industrialization, the question of developing adequate housing for the emergent working classes became more pressing than before. Moreover, the problem of unhygienic houses in industrial cities did not stop at the borders of a particular nation-state; sometimes literally as pandemic diseases spread out 'transnationally'. It is not a coincidence that in the nineteenth century the number of international congresses on hygiene and social topics expanded substantially. However, the historiography about social policy in general and social housing in particular, has often focused on individual cases because of the different pace of industrial and urban development and is thus dominated by national perspectives. In this paper, I elaborate on transnational exchange processes and local adaptations and transformations. I focus on the transfer of the housing model of SOMCO in Mulhouse, (a French house building association) during social international congresses. I examine whether cross-national networking enabled and facilitated the implementation of ideas on the local scale. I will elaborate on the transmission and the local adaptation of the Mulhouse-model in Belgium. Convergences, divergences, and different factors that influenced the local transformations (personal choice, political situation, socioeconomic circumstances) will be taken into accoun
    corecore