67 research outputs found

    Effects of mutations in the helix G region of horseradish peroxidase

    Get PDF
    Horseradish peroxidase (HRP) has long attracted intense research interest and is used in many biotechnological fields, including diagnostics, biosensors and biocatalysis. Enhancement of HRP catalytic activity and/or stability would further increase its usefulness. Based on prior art, we substituted solvent-exposed lysine and glutamic acid residues near the proximal helix G (Lys 232, 241; Glu 238, 239) and between helices F and F′ (Lys 174). Three single mutants (K232N, K232F, K241N) demonstrated increased stabilities against heat (up to 2-fold) and solvents (up to 4-fold). Stability gains are likely due to improved hydrogen bonding and space-fill characteristics introduced by the relevant substitution. Two double mutants showed stability gains but most double mutations were non-additive and non-synergistic. Substitutions of Lys 174 or Glu 238 were destabilising. Unexpectedly, notable alterations in steady-state Vm/E values occurred with reducing substrate ABTS (2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid)), despite the distance of the mutated positions from the active site

    A possible mechanism for cold denaturation of proteins at high pressure

    Get PDF
    We study cold denaturation of proteins at high pressures. Using multicanonical Monte Carlo simulations of a model protein in a water bath, we investigate the effect of water density fluctuations on protein stability. We find that above the pressure where water freezes to the dense ice phase (2\approx2 kbar), the mechanism for cold denaturation with decreasing temperature is the loss of local low-density water structure. We find our results in agreement with data of bovine pancreatic ribonuclease A.Comment: 4 pages for double column and single space. 3 figures Added references Changed conten

    Membrane chemical stability and seed longevity

    Get PDF
    Here, we investigate the relationships between the chemical stability of the membrane surface and seed longevity. Dry embryos of long-lived tomato and short-lived onion seeds were labeled with 5-doxyl-stearic acid (5-DS). Temperature-induced loss of the electron spin resonance signal caused by chemical conversion of 5-DS to nonparamagnetic species was used to characterize the membrane surface chemical stability. No difference was found between temperature plots of 5-DS signal intensity in dry onion and tomato below 345 K. Above this temperature, the 5-DS signal remained unchanged in tomato embryos and irreversibly disappeared in onion seeds. The role of the physical state and chemical status of the membrane environment in the chemical stability of membrane surfaces was estimated for model systems containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) dried alone or in the presence of trehalose or glucose. Fourier transform infrared spectroscopy was used to follow temperature-induced structural changes in dry POPC. Spin-label technique was used to relate the chemical stability of 5-DS with the dynamic properties of the bilayer and 5-DS motion behavior. In all the models, the decrease in 5-DS signal intensity was always observed above Tm for the membrane surface. The 5-DS signal was irreversibly lost at high temperature when dry POPC was embedded in a glucose matrix. The loss of 5-DS signal was moderate when POPC was dried alone or in the presence of trehalose. Comparison of model and in vivo data shows that the differences in longevity between onion and tomato seeds are caused by differences in the chemical status of the membrane surface rather than the degree of its immobilization

    Differential Scanning Fluorimetry provides high throughput data on silk protein transitions

    Get PDF
    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted ‘silk’ fibroin show that DSF can provide valuable insights into details of silk denaturation processes that might be active during spinning. We conclude that this technique and technology offers a powerful and novel tool to analyse silk protein transitions in detail by allowing many changes to the silk solutions to be tested rapidly with microliter scale sample sizes. Such transition mechanisms will lead to important generic insights into the folding patterns not only of silks but also of other fibrous protein (bio)polymers
    corecore