107 research outputs found

    Effect of electric load and dual atmosphere on the properties of an alkali containing diopside-based glass sealant for solid oxide cells

    Get PDF
    © 2019 Elsevier B.V. All rights reserved.A new alkali-containing diopside based glass-ceramic sealant for solid oxide cells was synthesized, characterized and tested. The composition was designed to match the coefficient of thermal expansion (CTE) of Crofer22APU interconnect. The sealant has a glass transition temperature of 600°C, a crystallization peak temperature of 850°C and a maximum shrinkage temperature of 700°C, thus suggesting effective densification prior to crystallization. The CTE of the glass-ceramic is 11.5 10-6 K-1, a value which is compatible with the CTE for Crofer22APU stainless steel. Crofer22APU/glass-ceramic/Crofer22APU joined samples were tested in simulated real-life operating conditions at 800°C in dual atmosphere under an applied voltage, monitoring the electrical resistivity. The effect of two different applied voltages (0.7V and 1.3V) was evaluated. A voltage of 1.3V led to a rapid decrease in the electrical resistivity during the test;such a drop was due to the formation of Cr2O3 “bridges” that connected the two Crofer22APU plates separated by the sealant. There was no decrease in the resistivity when a voltage of 0.7V was applied. Instead,resistivity value remained stable at around 105 Ω cm for the 100h test duration. The degradation mechanisms, due to both the alkali content and the applied voltage, are investigated and discussed.Peer reviewe

    Ytterbium disilicate-based glass-ceramic as joining material for ceramic matrix composites

    Get PDF
    A key aspect of ceramic matrix composites integration is related to a reliable joining technique. An ytterbium disilicate based glass-ceramic material is processed by reactive viscous flow sintering between a barium aluminium borosilicate glass and ytterbium oxide and it is used to join SiC/SiC and C/SiC composites. The joining temperature and the in situ formation of the Yb2Si2O7 is optimised at 1200°C without pressure, on the basis of the sintering and crystallisation mechanisms. The mechanical characterization of SiC/SiC and C/SiC joined with the ytterbium disilicate-based glass-ceramic, tested by single-lap offset at RT, exhibits an apparent shear strength of 35 MPa, similar to their interlaminar shear strength. The proposed system displays self-healing behaviour at 1000 °C and 1150 °C, as demonstrated by the partial and complete sealing of induced cracks by Vickers indentation on its surface at different loads, thus suggesting that it can effectively be used as promising joining material for CMCs

    Robocasting of advanced ceramics: ink optimization and protocol to predict the printing parameters - A review

    Get PDF
    Direct-Ink-Writing (or robocasting) is a subset of extrusion-based additive manufacturing techniques that has grown significantly in recent years to design simple to complex ceramic structures. Robocasting, relies on the use of high-concentration powder pastes, also known as inks. A successful optimization of ink rheology and formulation constitutes the major key factor to ensure printability for the fabrication of self-supporting ceramic structures with a very precise dimensional resolution. However, to date achieving a real balance between a comprehensive optimization of ink rheology and the determination of a relevant protocol to predict the printing parameters for a given ink is still relatively scarce and has been not yet standardized in the literature. The current review reports, in its first part, a detailed survey of recent studies on how ink constituents and composition affect the direct-ink-writing of ceramic parts, taking into account innovative ceramic-based-inks formulations and processing techniques. Precisely, the review elaborates the major factors influencing on ink rheology and printability, specifically binder type, particle physical features (size, morphology and density) and ceramic feedstock content. In the second part, this review suggests a standardized guideline to effectively adapt a suitable setting of the printing parameters, such as printing speed and pressure, printing substrate, strut spacing, layer height, nozzle diameter in function of ink intrinsic rheology

    Li1.4Al0.4Ge0.4Ti1.4(PO4)3 promising NASICON-structured glass-ceramic electrolyte for all-solid-state Li-based batteries: Unravelling the effect of diboron trioxide

    Get PDF
    Li-ion batteries (LIBs) are the ubiquitous technology to power portable electronics; however, for the next-generation of high-performing electrochemical energy storage systems for electric vehicles and smart grid facilities, breakthroughs are needed, particularly in the development of solid-state electrolytes, which may allow for enhanced energy density while enabling lithium metal anodes, combined with unrivalled safety and operative reliability. In this respect, here we present the successful synthesis of a glass-ceramic Li1.4Al0.4Ge0.4Ti1.4(PO4)3 NASICON-type solid-state electrolyte (SSE) through a melt-casting technique. Being grain boundaries crucial for the total ionic conductivity of SSEs, the effect of the addition of diboron trioxide (B2O3, 0.05 wt.%) to promote their liquefaction and restructuring is investigated, along with the effects on the resulting microstructures and ionic conductivities. By the thorough combination of structural-morphological and electrochemical techniques, we demonstrate that bulk materials show improved performance compared to their powder sintered counterpart, achieving remarkable ion mobility (> 0.1 mS cm–1 at –10 °C) and anodic oxidation stability (> 4.8 V vs Li+/Li). The addition of B2O3 positively affects the grain cohesion and growth, thus reducing the extension of the grain boundaries (and the related grain/grain interface resistance) and, therefore, increasing the overall ion mobility. In addition, B2O3 is seen to contrast the microcracks formation in the LAGTP system under study which, overall, shows very promising prospects as SSE for the next-generation of high-energy density, safe lithium-based batteries

    Glass-ceramic sealant for solid oxide fuel cells application: Characterization and performance in dual atmosphere

    Get PDF
    This document is the Accepted Manuscript version of the following article: A. G. Sabato, G. Tempura, D. Montinaro, A. Chysanthou, M. Salvo, E. Bernardo, M. Secco, F. Meacetto, ‘Glass-ceramic sealant for solid oxide fuel cells application: characterization and performance in dual atmosphere’, Journal of Power Sources, Vol. 328:262-270, October 2016, doi: http://dx.doi.org/10.1016/j.jpowsour.2016.08.010. Published by Elsevier. This manuscript version is distributed distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License CC BY NC-ND 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.Glass-ceramic composition was designed and tested for use as a sealant in solid oxide fuel cell (SOFC) planar stack design. The crystallization behaviour was investigated by calculating the Avrami parameter (n) and the activation energy for crystallization (Ec) was obtained. The calculated values for n and Ec were 3 and 413.5 kJ/mol respectively. The results of thermal analyses indicate that this composition shows no overlap between the sintering and crystallization stages and thus an almost pore-free sealant can be deposited and sintered at 850 °C in air for 30 min. A gas tightness test has been carried out at 800 °C for 1100 h in dual atmosphere (Ar-H2 and air) without recording any leakage. Morphological and crystalline phase analyses were conducted prior and following tests in dual atmospheres in order to assess the compatibility of the proposed sealant with the metallic interconnect.Peer reviewe

    Electrophoretic co-deposition of Mn1.5Co1.5O4, Fe2O3 and CuO: Unravelling the effect of simultaneous addition of Cu and Fe on the microstructural, thermo-mechanical and corrosion properties of in-situ modified spinel coatings for solid oxide cell interconnects

    Get PDF
    A systematic microstructural, thermo-mechanical and electrical characterization of simultaneous Fe–Cu doped Mn–Co spinel coatings processed by electrophoretic co-deposition on Crofer 22 APU is here reported and discussed. An innovative approach for the simultaneous electrophoretic deposition of three spinel precursors is designed, conceived and optimised, with the aim of outlining time- and energy-saving spinel modification routes. The effect of different levels of Cu and Fe co-doping is observed on the stability of the modified Mn–Co spinel phase, the coefficient of thermal expansion (CTE), the corrosion resistance and on the densification behaviour of the obtained coatings. Cu determines an increase of CTE, while Fe has the opposite behavior. The synergic effect of the simultaneous Fe and Cu co-doping results in an improved densification and the stabilization of the MnCo2O4 cubic phase. The most interesting results in terms of corrosion resistance are obtained for the Mn1.28Co1.28Fe0.15Cu0.29O4 spinel

    Optimization of electrophoretic deposition technique to control doping and densification of protective spinel coatings for SOC interconnects

    Get PDF
    Manganese cobaltite spinel coatings have been reported to limit oxidation and Cr-evaporation from ferritic stainless steel interconnects in solid oxide cell stacks; however, the implementation of the functional properties of the base Mn–Co spinel coating and compatibility with the substrate can be pursued through the optimisation of the coating composition, as well as the deposition method and sintering profile. Electrophoretic deposition (EPD) allows to deposit homogeneous layers in few seconds on complexly shaped steel components; it also offers the possibility to produce in-situ doped coatings, avoiding time and energy consuming multi-step processes. In this work, various EPD suspensions are optimised to achieve a single step co-deposition of CuO, Fe2O3 and Mn1,5Co1,5O4 on Crofer 22 APU. Different Fe-Cu doped Mn–Co spinel are successfully obtained by controlling the precursors amount in the EPD suspension and subsequent reactive sintering, as proved by detailed SEM and TEM analyses. Improved functional properties of produced coatings are evaluated in terms of oxidation kinetics and area specific resistance. Both the iron and copper amount in the coating and the sintering process significantly influence the coating densification, with benefits to the protective properties and thermomechanical compatibility with the interconnect

    Recent advances on spinel-based protective coatings for solid oxide cell metallic interconnects produced by electrophoretic deposition

    Get PDF
    The application of ceramic protective coatings to the metallic interconnects in solid oxide cells (SOCs) is a viable and effective method to limit interconnect degradation issues. This featured letter provides a critical overview of the main outcomes of current research on the use of the electrophoretic deposition (EPD) technique to produce protective coatings for SOC metallic interconnects, specifically focusing on different approaches to stabilise spinel-based suspensions, as well as the possible sintering procedures. The protective properties of EPD coatings are reviewed and discussed in terms of oxidation kinetics and area specific resistance evaluation

    Pressure assisted flash sintering of Mn-Co based spinel coatings for solid oxide electrolysis cells (SOECs)

    Get PDF
    Pressure assisted flash sintering was used to process Mn-Co-Cu based spinel coatings, electrophoretically deposited on a Crofer22APU interconnect. This method resulted in highly dense coatings, heat-treated for only a short duration (200 °C/min). The high heating rate promoted Cu modified Mn-Co spinel and limited the formation of a Cr-oxide scale on the Crofer22APU substrate. Flash sintering was found to be a promising and time efficient sintering technique to overcome some of the issues related to low coating density and oxide scale formation in solid oxide electrolysis cell conditions

    Glass-ceramic sealants for SOEC: Thermal characterization and electrical resistivity in dual atmosphere

    Get PDF
    A Ba-based glass-ceramic sealant is designed and tested for solid oxide electrolysis cell (SOEC) applications. A suitable SiO2/BaO ratio is chosen in order to obtain BaSi2O5 crystalline phase and subsequently favorable thermo-mechanical properties of the glass-ceramic sealant. The glass is analyzed in terms of thermal, thermo-mechanical, chemical, and electrical behavior. Crofer22APU-sealant-Crofer22APU joined samples are tested for 2000 h at 850 ◩C in a dual atmosphere test rig having reducing atmosphere of H2:H2O 50/50 (mol%) and under the applied voltage of 1.6 V. In order to simulate the SOEC dynamic working conditions, thermal cycles are performed during the long-term electrical resistivity test. The glass-ceramic shows promising behavior in terms of high density, suitable CTE, and stable electrical resistivity (106–107 Ω cm) under SOEC conditions. The SEM-EDS post mortem analysis confirms excellent chemical and thermo-mechanical compatibility of the glass-ceramic with Crofer22APU
    • 

    corecore