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Abstract 

A new alkali-containing diopside based glass-ceramic sealant for solid oxide cells was 

synthesized, characterized and tested. The composition was designed to match the 

coefficient of thermal expansion (CTE) of Crofer22APU interconnect. The sealant has a 

glass transition temperature of 600°C, a crystallization peak temperature of 850°C and a 

maximum shrinkage temperature of 700°C, thus suggesting effective densification prior to 

crystallization. The CTE of the glass-ceramic is 11.5 10-6 K-1, a value which is compatible 

with the CTE for Crofer22APU stainless steel. Crofer22APU/glass-ceramic/Crofer22APU 

joined samples were tested in simulated real-life operating conditions at 800°C in dual 

atmosphere under an applied voltage, monitoring the electrical resistivity. The effect of two 

different applied voltages (0.7V and 1.3V) was evaluated. A voltage of 1.3V led to a rapid 

decrease in the electrical resistivity during the test;such a drop was due to the formation of 

Cr2O3 “bridges” that connected the two Crofer22APU plates separated by the sealant. 

There was no decrease in the resistivity when a voltage of 0.7V was applied. 
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Instead,resistivity value remained stable at around 105 Ω cm for the 100h test duration. 

The degradation mechanisms, due to both the alkali content and the applied voltage, are 

investigated and discussed. 

 

Introduction 

In recent years much effort by the scientific community has focused on solid oxide cell 

(SOC) technology [1-5] which  is attractive due to a high achievable efficiency [6,7]. A 

further advantage is the possibility to design reversible devices that can act both as 

electrolyzers (solid oxide electrolysis cells SOEC) as well as electrical power generators 

(solid oxide fuel cells SOFC) [8,9]. In both configurations, the operating conditions are 

rather extreme [5,7,10,11], involving reducing and oxidizing atmospheres, high operating 

temperatures (750-850°C) and long operating periods (at least 40,000h). The design of 

devices for use under these conditions involves the selection of such materials as to 

minimise degradation rates for the entire lifecycle of the SOC apparatus. In both operating 

modes (electrolyzer or fuel cell mode), it is necessary to connect many cells in series in a 

stack [6,10,11]. This way, it is possible to reach usable output power in the case of SOFC 

or feasible hydrogen production amounts in the caseof SOEC. 

A very important component in the planar stack design is the sealant; its function is crucial 

in order to guarantee the correct operation of the SOC stack for its complete service life 

[6,11-14]. The sealant is exposed to both oxidizing and reducing environments at elevated 

temperatures and its main role is to prevent gas mixing. Therefore, it must maintain gas 

tightness and integrity during the entire life of the device and needs to be thermo-

mechanically compatible with the sealed metallic and ceramic components. The sealant 

must also be chemically stable at the operating conditions in order to avoid detrimental 

reactions with the joined materials and with the atmospheres to which it is exposed [6,11-
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14]. Furthermore, since the sealant must operate under an applied electrical voltage, it 

requires high electrical resistivity in order to avoid current shunting and development of 

electrochemical reactions [13-18]. 

Among the different classes of materials investigated during recent decades, glass-

ceramics seem to be the most promising, owing to their high chemical stability under the 

operating conditions. In addition, an accurate design of their composition allows the 

tailoring of their properties (e.g. coefficient of thermal expansion, electrical resistivity, 

viscosity and characteristic temperatures). Diopside (CaMgSi2O6) based glass-ceramics 

have been identified as potential materials for SOC sealing application [14,19-22] owing to 

the high chemical stability of diopside and its coefficient of thermal expansion [23]. The 

crystallization of this phase could help tailor the overall properties of the glass-ceramic 

sealant to satisfy the requirementsfor application on planar SOC stacks (i.e. improving its 

mechanical and thermomechanical properties). 

The introduction of alkali oxides in the glass as network modifiers represents an effective 

strategy for lowering the viscosity of the system, the glass transition temperature (Tg) and 

the softening temperature (Ts) [12,13,24].  The joining process is carried out at a 

temperature higher than the softening point [25-28] and the viscous behaviour of the 

material allows high densification (when starting from the powder form) leading to more 

effective wetting of the components to be sealed. The introduction of alkali oxides also 

increases the CTE of the glass-matrix [12,13,24] and can therefore play a significant role 

in the tailoring of the thermo-mechanical properties of the glass-ceramics, making them 

compatible with the sealed components. 

However, the behaviour of alkalis in typical SOC working conditions has been debated and 

it is rather controversial. Many studies [12,14,29-31] have reported the detrimental effects 

of these elements that can react with the Cr contained in the ferritic stainless steels, 
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typically used as interconnect materials (like Crofer22APU or AISI441), with the 

consequent formation of volatile chromates. This is crucial, since in many planar stack 

designs the sealants need to be placedbetween the frames and the interconnects which 

are both made from ferritic stainless steel. The formation of chromates (such as Na2CrO4, 

K2CrO4, BaCrO4 or SrCrO4) is due to the reaction between the sealant and the 

interconnect and may compromise the integrity of the joint or lead to cathode poisoning (in 

case of volatile chromates) [30,32]. The correct order of events involved in degradation 

mechanisms and the effect of different operating conditions (i.e. composition of the 

atmospheres, pre-oxidation of steels, applied voltages) is still unclear. Detrimental 

reactions would be expected to take place at the interface between the interconnects and 

the alkali-containing sealants. However, Ogasaswara et al. [30] pointed out that the 

reactions between Cr and alkalis occurs mainly between gaseous species at the air side. 

In their study they supposed that the reaction occurred between Cr in the oxide scale of 

the interconnect and gaseous KNO3 and NaNO3, formed at the air side of an alkali-

containing sealant. However KNO3 and NaNO3 are not stable at typical operating 

temperatures for SOFC and decompose. Therefore we consider this reaction path as 

rather unlikely. Another possible explanation could be reaction between gaseous Cr-

containing species, such as CrO2(OH)2(g) and alkali oxides contained in the sealant. 

In spite of this, many alkali-containing glassy systems have been successfully tested in the 

past [20,22,25,33-39]. Some of them were also thesubject of patents [40-42] or are 

commercially available (e.g.SCN-1 from SEM-COM, Toledo, OH). These systems, when 

submitted to relevant conditions (i.e. dual atm.), in contact with Crofer22APU or AISI441 

stainless steels, did not show any formation of volatile species and guaranteed gas 

tightness even after long term exposure (more than 500h). For example, Chou et al. [33-

35] successfully tested commercial sealant SCN-1, containing Na and K, for sealing 
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AISI441 stainless steel in different relevant conditions by conducting thermal cycling, dual 

atmosphere and long term aging (at least 500h at 700°C, 750°C and 800°C). The long 

term (up to 10,000h at 800°C) compatibility between alkali containing glasses and 8% 

yttria-stabilised zirconia (8YSZ), which is the electrolyte material, was evaluated by Shyam 

et al. [43]. No detrimental reaction between the alkali metal oxide and 8YSZ was found in 

this study.  

In our previous studies on alkali-containing diopside-based glass-ceramics sealants 

[20,22,44], it has been found that the strong heterogeneous nucleation of diopside, at the 

interface with the interconnect material may prevent detrimental reactions between the 

alkalis in the glassy phase and the Cr in the steel/oxide scale. However, to the authors 

best knowledge there are no papers focused on the testing of alkali-containing diopside-

based sealants under relevant conditions, i.e. dual atmosphere with applied voltage. 

The present authors consider the nature of the glass-ceramics as an opportunity to 

encourage the crystalline phase (that does not contain sodium) to heterogeneously 

crystallise at the surface of the interconnect; such an approach will potentially lead to 

shielding of the chromium oxide from sodium and prevent chromate formation at the 

interface. Moreover, the exact mechanism of the degradation of SOC stack performances, 

due to the presence of alkali oxides in the glass-ceramic sealants, is not completely clear 

and fully understood. To the authors best knowledge, there is a lack of studies focusing 

specifically on this aspect.  

This paper focuses on the design, characterization and testing of a new Na-containing 

diopside-based glass-ceramic composition. Crofer22APU/glass-ceramic/Crofer22APU 

joined samples were tested for 100h in conditions similar to performance conditions for 

SOFCs: 800°C in dual atmosphere with the application of a DC electrical voltage. Despite 

a period of 100h is significantly shorter than the expected operating life for a SOFC stack 
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(i.e. 40,000h), the obtained results can be considered as predictive of the behaviour of 

these systems under relevant conditions for longer periods, thus providing insights for the 

use of Na-containing sealants when high voltage is applied to the stack. Rost et al. have 

published studies on the degradation behavior of other types of SOFC-sealing glasses by 

using this apparatus [45]. They have shown that sealing glasses containing reactive 

components (i.e. ZnO) tend to react stronger with the steel interface by redox-reactions 

what in turn leads to a strongly decreased resistance within a limited testing period up to 

max. 300h. The glass-ceramic studied here was obtained by modifying a previous glass 

composition that had successfully survived periods longer than 1000h in a dual 

atmosphere or in air at 800°C, without the application of electrical voltage [22,44]. The 

changes in the compositions were tailored in order to increase the content of diopside in 

the glass-ceramic, which in turn led to a CTE value more suitable for its thermo-

mechanical compatibility with Crofer22APU. The role of Na in the degradation of the 

electrical resistivity in these conditions is reviewed and discussed and the study attempts 

to further investigate the involved mechanisms, paying particular attention to the effect of 

different applied voltages. A similar approach was previously adopted by Rost et al. on Ba-

containing glass-ceramics [26,45,46].  

 

Experimental 

The investigated glass-ceramic was designed using the SciGlass® database (Science 

Serve GmbH, SciGlass 6.6 software, Newton, MA, USA) and was labelled V10. It was 

produced by conventional melting and casting, starting with high purity grade oxide or 

carbonate precursors. The V10 sealant has the following composition in wt%: SiO2 49.3%, 

Na2O 9.3%, Al2O3 8.3%, B2O3 5.8%, MgO 13%, CaO 14.3%. For MgO, CaO and Na2O,the 

respective carbonates were used as starting powders (Sigma Aldrich, purity higher than 
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99.9%), while for the B2O3, H3BO3 (Sigma Aldrich, purity higher than 99.9%) was used. 

The parent glass composition was designed on the basis of the results obtained for the 

previous system labelled V9 [22], with the purpose to increase the content of CaO and 

thus extend the amount of diopside in the glass-ceramic in order to increase the CTE to a 

value closer to that for Crofer22APU. 

The raw powders were mixed in the right proportions before melting, taking into account 

the decomposition of carbonates and acids used as precursors in order to derive an 

accurate final composition as reported above. The glass was produced in a Pt-Rh crucible 

at 1600°C with a heating rate of 10°C min-1 and cast as frit in deionized water at room 

temperature. The frit was subsequently milled in a planetary ball mill (Fritsch, Pulverisette 

5, Mark Einersheim, Germany) in agata crucibles for 12h. The obtained powders were 

characterized by means of differential thermal analysis (DTA) and heating stage 

microscopy (HSM) in order to study their sinter-crystallization behaviour. DTA (Netzsch, 

DTA 404 PC, Eos, Selb, Germany) was performed using 100mg of the glass powder 

against 100mg of Al2O3 (Alfa Aesar, purity higher than 99,99%) that was used as the 

reference material at a heating ramp of 5°C/min from room temperature to 1200°C. The 

same heating program was used for Hot Stage Microscopy (HSM; Hesse Instruments, 

Osterode, Germany,). A cylindrical powder compact, 2 mm in diameter and 2 – 3 mm in 

height was placed on a Crofer22APU steel substrate that had been pre-oxidised at 900°C 

for 10h in air. In this configuration, the sintering and subsequent wetting properties of glass 

was investigated on the interconnect material, used for SOC-stacks. On the basis of the 

results of thermal characterization, the joining thermal treatment was chosen to be at 

850°C. for 1h in air.  

The crystalline phases, formed in the glass-ceramic, were studied by X-ray diffraction 

(XRD). The XRD measurements were carried out in the diffractometer D8 Advance  (Bruker AXS, 
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Karlsruhe, Germany) with CuKα radiation and with a LynxEye position-sensitive detector (PSD) and 

a nickel filter located in the primary beam. The analyses for the glass-ceramic were carried out 

after the joining treatment at 850°C for 1h, as well as after two different aging periods at 

800°C for 100h and 300h. The powders for the analyses were obtained by crushing the 

pellets following the thermal treatments. Qualitative analyses were carried out using 

DIFFRAC.EVA (Bruker AXS) and quantitative analyses were performed using Rietveld 

refinement with pure crystalline Si as the internal standard and Topas V5 (Bruker AXS) 

with structural data from ICSD. 

The V10 dilatometric behaviour was investigated by dilatometry (DIL,Netzsch, DIL 402 

PC/4). The measurements were carried out using a heating rate of 5°C/min with an 

automating softening point detection. The CTE of each sample was measured between 

200-500°C. The samples that were investigated by DIL were the glass, that was cast on a 

brass plate, and the glass-ceramic pellets. Three different glass-ceramic pellets were 

analysed; pellets after joining and after aging for 100h and 300h at 800°C. 

The V10 sealant was tested in contact with pre-oxidised Crofer22APU stainless steel that 

was used as the interconnect material. The pre-oxidation was carried out at 900°C for 10h, 

for all the joined samples. In order to investigate the compatibility between these materials 

after the joining process, a Crofer22APU/V10/Crofer22APU sandwich sample was 

processed by depositing the glass onto Crofer22APU using screen-printing (EKRA 

Microtronic 2; Eduard Kraft GmbH, Kirchheim, Germany). For screen printing, a printable 

paste was produced out of the glass powder and applied on the top and bottom 

Crofer22APU-substrate. With a manually layered paste applied before the joining process, 

joining heights of about 250 µm were reached. After the aging process, the sampleswere 

embedded in resin and cross-sectioned with a diamond wire saw (WELL 6234, well 

Diamantdrahtsagen GmbH; Mannheim, Germany). These were ground and polished 
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according to an internal procedure used at the IKTS, developed for combinations of tough 

and brittle materials. For electron microscopy, the cross-sections were coated with 

graphite for morphological and chemical analyses by means of FESEM/EDS (Zeiss 

Ultra 55, Oberkochen, Germany).  

The V10 glass-ceramic, coupled with pre-oxidised Crofer22APU was also tested under 

simulated operating conditions of a SOFC stack. Crofer22APU/V10/Crofer22APU joined 

samples were exposed to a dual atmosphere environment: oxidizing on one side and 

reducing on the other, with the application of a DC electrical voltage. A mixture of 10vol% 

H2, 7vol% CO2, 80vol% N2, 3vol% H2O was used as the simulated fuel atmosphere, while 

the oxidizing one was static air. Details of experimental apparatus for the dual atmosphere 

test in presence of applied voltage can be found in [45]. These samples were tested for 

100h, after the joining process, at 800°C, monitoring the electrical resistivity of the system. 

For the accurate evaluation of the resistivity, it is very important to know the exact 

dimensions of the joint and therefore screen-printing wasused for the deposition of the 

sealant, as described above for the as-joined sample. The application of electrical potential 

and the measurement of the resistivity were carried out by welding Pt wires to the steel 

plates before joining. Two different electrical voltage values were used: 0.7V and 1.3V for 

comparison. Power supply and detection of the current, for calculating the resistivity was 

conducted by a HAMEG HM7044 four fold power supply, respective four precision 

multimeters HM8112-3 (HAMEG Instruments GmbH, Mainhausen, Germany). Post-

mortem morphological SEM/EDS analyses were performed on cross-sections of these 

samples after the test. The investigations were carried out in the middle part of the joint as 

well as at the three-phase boundary region at the air side, i.e. Crofer22APU/sealant/air. 

For comparison, the electrical resistivity was also measured on the glass-ceramic that was 

not in contact with the Crofer22APU; for this purpose, a cylindrical pellet was prepared and 
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treated at 850°C for 1h. Pt wires were adhered to the glass-ceramic using a gold-based 

paste and the electrical resistivity was measured for 100h at 800°C in air with a constant 

applied voltage of 1.3V. 

The gas tightness of the joined samples after the dual atmosphere tests was assessed by 

He-leakage rate measurement with a Phoenix L300 (Leybold GmbH, Colone, Germany) 

equipped with a suitable sample holder. 

 

Results and Discussion 

In order to compare the sintering and crystallization behaviour of the glass system, DTA 

and HSM analyses were carried out. Fig. 1a compares the experimental data obtained 

from DTA and HSM analyses.  

The V10 glass (in the form of powder) showed a glass transition temperature (Tg) of 600°C 

and a crystallization peak temperature (Tp) of 850°C. It is apparent from the results of the 

correlational analysis that the crystallization peak was at a temperature higher than the 

maximum shrinkage temperature (Tms), as detected by HSM. This suggests that no 

overlap between the two phenomena occurred under these conditions, indicating that the 

crystallization of the glass does not hinder the sintering process by viscous flow nor the 

densification of the material. The HSM software also detected the first shrinkage 

temperature (Tfs) and the melting temperature (Tm). The pictures of the sample 

corresponding to the characteristic temperatures detected by HSM are reported in Fig. 1b. 

It is noticeable that the temperatures of sphere (Tsp) and half-sphere (Ths) are missing from 

these data. This means that the instrument did not detect these shapes. This was likely to 

be due to the fact that the glass that was in contact with the pre-oxidised Crofer22APU 

sample undergoes strong crystallization at the interface (confirmed by SEM analyses 
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shown in Fig. 1c); this provides the HSM pellet with a more rigid structure and thus does 

not allow the detection of shapes corresponding to lower viscosity values.  

The thermo-mechanical compatibility between the V10 and pre-oxidised Crofer22APU was 

confirmed by morphological SEM analyses. In Fig. 1c, the sealant appears to be well-

bonded to the steel counterpart without the formation of cracks or delamination at the 

interface. The interface appears to be intact without evidence of adverse reactions and no 

formation of volatile products like sodium chromates. This is due to the formation of an 

almost continuous layer of diopside crystals, confirming the heterogeneous interface 

crystallization suggested by HSM analyses, that shielded the chromium oxide in the steel 

to prevent any interaction with Na in the glassy part of the sealant. 
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Figure 1: Superimposition of HSM and DTA results for V10 glass powders (a), shapes of the samples recorded by HSM 
corresponding to characteristic temperatures Tfs, Tms and Tm (b) and SEM micrograph of the interface V10/preoxidised 

Crofer22APU after the joining treatment at 850°C for 1h in air.  

 

The crystallization of the parent glass plays a fundamental role in the final properties of the 

sealing material. Fig.2 depicts the XRD diffraction patterns collected for the V10 glass-

ceramic after different thermal treatments; the as-joined sample is shown in Fig.2a, while 

figures 2b an 2c present samples following aging at 800°C for 100h and 300h respectively.  

After the joining process, Al-containing diopside (Ca(Mg,Al)(Si,Al)2O6, PDF #00-041-1370) 

was identified as the main crystalline phase. The peaks of nepheline (NaAlSiO4, PDF #00-

035-0424) are also present in the patterns of both aged samples together with the peaks 

of diopside. The crystallization of nepheline during the initial stages of aging occurs 

adjacent to the diopside phase and separates the Na from Cr2O3. This could be beneficial 
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as the Na is “trapped” in the crystalline nepheline phase and thus limiting its potential to 

react with Cr as reported previously by Smeacetto et al. [47]. The results of Rietveld 

analyses are summarized in Table 1. Comparing Fig.2 with Table 1, it is noticeable that 

after aging at 800°C for 100 hrs, the amount of amorphous phase decreased in 

accordance with the crystallization of nepheline and the increase in the diopside content. 

However, the glass-ceramic system seems to be stable after this period, considering that 

after 300h of aging no new phases and no significant changes in the relative amounts of 

each phase were detected. This is very important, because a sealant should maintain a 

certain level of stability during the entire operating life of a SOC device, as excessive 

variations in the nature or amount of the crystalline phases could lead to detrimental 

changes in the thermo-mechanical properties of the sealant and maybe to sealant failure. 

Furthermore, the XRD quantitative analyses highlighted a significant amount of residual 

glassy phase which could be useful during thermal cycling giving rise to possible self-

healing behaviour. 

In order to study the evolution of the CTE of the material due to its partial crystallization, 

dilatometer measurements were carried out on the as-cast V10 glass and on the glass-

ceramic after the joining process, as well as after aging for 100h and 300h at 800°C. The 

results are presented in Fig.3 together with the CTE values measured between 200°C and 

500°C. The crystallization of diopside during the joining treatment increased the CTE of 

the material from 7.6 10-6 K-1 to 11.5 10-6 K-1 (both values were evaluated in the range 300-

500°C). This is a reasonable result considering the CTE of the diopside (11.6 10-6 K-1) [23]. 

The evolution of the crystalline phases during aging slightly affected the CTE value of the 

glass-ceramic lowering it to 11.2 10-6 K-1 (300-500°C) after 100h of aging at 800°C. This is 

due to the formation of around 8wt% of nepheline (Table 1) with a CTE of 9 10-6 K-1 [48], 

maybe partially counterbalanced by a further increase in the diopside content (from 37wt% 
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to 43wt%). The quantitative and qualitative stability in terms of crystalline phases 

previously discussed, is confirmed by the DIL measurements. Indeed, the CTE value (11.3 

10-6 K-1) measured after aging for 300h does not differ significantly from the one recorded 

after aging for 100h. However, all the recorded values inherent to the glass-ceramic 

indicate very good thermo-mechanical compatibility with Crofer22APU stainless steel 

which has a CTE of 11.9 10-6 K-1 (between 25°C and 800°C) [49]. 

Furthermore, the amount of diopside contained in the glass-ceramic (Table 1) confirms the 

tailoring of the starting composition as intended by the authors. Indeed, the increased 

content of Ca in comparison with the previous system studied (labelled V9) [22] led to an 

effective increase in the content of this crystalline compound after aging. Thus, V10 

contains around 5-6 wt% more diopside than V9. The main purpose of increasing the 

amount of diopside was to raise the CTE of the glass-ceramic to a value closer to that for 

Crofer22APU. This target has been successfully achieved; the CTE of V10 glass-ceramic 

after aging was 11.310-6 K-1 in comparison to the value of 9.6 10-6 K-1for V9. 
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Figure2: XRD indexed patterns of V10 glass-ceramic after the joining process (a), after an aging at 800°C for 100h (b) 
and for 300h (c). 

 

Table 1: Quantitative results of Rietveld refinement method on V10 glass-ceramic afterthe joining process, after an 
aging at 800°C for 100h and 300h. 

Wt% Amorphous 
Diopside 

Ca(Mg,Al)(Si,Al)2O6 
Nepheline 
NaAlSiO4 

As-joined 63 37 - 

Aged 100h 49 43 8 

Aged 300h 50 42 8 
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Figure 3: DIL measurements for V10 glass as-casted, after the joining thermal treatment and glass-ceramic after 
different aging periods at 800°C. 

 

Crofer22APU/V10/Crofer22APUjoined samples were tested in dual atmosphere in the 

presence of 1.3Vand 0.7V applied voltage for 100h at 800°C. The results of electrical 

resistivity measurements are shown in Fig.4 together with electrical resistivity data for a 

reference V10 glass-ceramic sample that was not in contact with the Crofer22APU steel. 

These data were measured in air at 800°C for the same period. In Fig 4, the value of 104 Ω 

cm is marked with a dotted line. This value is considered the minimum below which current 

shunting might take place [12,13]. The V10 glass-ceramic maintained satisfactory values 

of resistivity for the entire test. During the first 20h of the test, a rapid increase in the 

electrical resistivity was measured; this could be due to the crystallization of nepheline 

during this period, trapping the Na+ ions and reducing their mobility. Indeed, the alkali ions 

are widely considered to be charge carriers in glasses at temperatures higher than the Tg 

of the glass [35]. The sample to which 0.7V was applied exhibited a behaviour which is 

more similar to the one of the reference glass-ceramic for some aspects. The recorded 

values for this sample (0.7V) were in a range of 105-106 Ω cm, slightly lower than the 
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values corresponding to the reference glass-ceramic. However, the recorded values were 

stable and acceptable for the entire test. The sample that was subjected to an electrical 

potential of 1.3V, experienced a fast decrease in the resistivity. The electrical resistivity 

values were observed to be below the limit value (104 Ω cm) required to avoid current 

shunting in SOC stacks, especially in case of SOEC operation. 

Chou et al. [33-35] studied an alkali-containing compliant silicate glass (containing Na and 

K) and it was electrically tested in dual environment with plain, aluminized and YSZ-coated 

AISI441 substrates. They observed a strong reduction in the electrical resistivity of the 

samples produced with bare stainless steel. On the other hand, the joint obtained with the 

passivated steel maintained a desirable electrical resistivity. This behaviour was ascribed 

to two phenomena; (i) the mobility of free alkali ions in theglassy material above Tg 

(considered as charge carriers) and (ii) the diffusion of elements from the non-passivated 

steel into the sealant with consequent microstructural changes. 

 

Figure 4: Resistivity values at 800°C for 100 h of the glass-ceramic itself with 1.3V applied voltage (a) and the joints exposed to dual 
atm. with both 0.7V (b) and 1.3V (c).  
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Post mortem SEM/EDS cross-section analyses of Crofer22APU/V10/Crofer22APU joints in 

the middle part of the joining are shown in Fig. 5 (application of 0.7V) and Fig. 6 

(application of 1.3V) respectively. The two polarised interfaces differ significantly from 

each other. At the anodically (positive) polarised interface with 0.7V applied (Fig. 5a) no Cr 

diffusion was detected into the glass-ceramic, as evidenced by the EDS analysis at point 

2; EDS analysis at point 1 confirmed the presence of nepheline as the minor crystalline 

phase, while elongated crystals, preferentially nucleating and growing from the MnCr-oxide 

layers, represent the main diopside crystalline phase. The examination at the cathodic 

(negative) polarised interface (Fig. 5b) revealed Mg-Mn-Cr rich crystals (point 4), together 

with Cr presence in the glassy phase of the glass-ceramic sealant (point3). 

The application of a higher voltage (1.3V) led to significant differences such as the 

formation of Cr rich regions (EDS point 3) in the proximity of pores in the glass-ceramic 

sealant, as indicated by the red arrows in Fig. 6b. The development of these CrOx regions 

was unlikely to be due to Cr diffusion from the cathodic polarised interface (see EDS point 

3); the presence of substantial amounts of Cr (around 35 at%) within the porous areas is 

likely to have taken place due to volatilization. This conclusion was drawn because the 

concentration of Cr moving away from the interface with the pre-oxidised Crofer22APU 

was only 4at% (EDS point 2), while within porous areas further away the amount of Cr 

reached 35 at%. The low concentration of Cr close to the interface was due to diffusion, 

while the high concentration further away was due to vaporization and condensation. The 

morphology of CrOx grown in the pores also suggests the condensation of a volatile 

compound.  

The outward diffusion of Cr, from the cathodically polarised steel plates for both 0.7V and 

1.3V applied voltage, led to the formation of pores beneath the oxide scale on the surface 

of the Crofer22APU. At this interface, the oxide scale appears to be irregular and thinner 
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than in the case of the anodically polarised interface, where oxides seem to be grown in 

the steel just below the scale (Fig. 6b). However, the glass-ceramic remained well-bonded 

onto the steel at both interfaces. 

 

 

Figure 5: SEM/EDS analyses on the sample subjected to 0.7V: anodically (positive) polarized interface (a) 
andcathodically (negative) polarized one (b). The results of EDS carried out on the regions, marked with the red 

numbers, are reported in the corresponding tables. 
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Figure 6: SEM/EDS analyses of the sample subjected to 1.3V:  anodically (positive) polarized interface (a) and 
cathodically (negative) polarized one (b). The results of EDS carried out on the regions, marked with the red numbers, 

are reported in the corresponding tables. 

 

SEM micrographs collected at the air side of the joining subjected to 1.3V with static air 

are presented in Fig. 7 together with the results of EDS mapping. The white numbers in 

the picture correspond to the regionsat which EDS semi-quantitative point analyses were 

carried out. These results are summarized in Table2.  

The external part of the sealant in contact with air appears to have degraded during the 

test. In spite of this, the joint remained sound; this was confirmed by further analyses (not 

reported here) carried out within the middle of the sample as well as close tothe reducing 

side. Furthermore, the results of leakage tests showed that leakage rates of these samples 
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lay between 10-11 and 10-10 mbar l s-1, thus confirming gas tightness of the joints after the 

test. 

The most interesting observation is the evidence of formation of a bright (in SEM 

backscattered mode) compound which grew starting from the negative polarized plate. 

The EDS maps revealed the presence of Cr and O. EDS point analyses (marked as point 

1 in the SEM micrograph) were also collected in this region leading to a composition of: 

45.1at% of Cr and 54.9at% of O. This suggests that this compound consists of chromia 

(Cr2O3).  

The observed decrease of the electrical resistivity in Fig. 4 could be attributed to the 

formation of these products which provided a bridging effect between the two 

Crofer22APU plates, thus lowering the measured resistivity. Indeed, at 800°C the chromia 

has an electrical resistivity much lower than the V10 glass-ceramic (lower than ≈102 Ω cm) 

[50,51]. 

In the anodic polarized steel, a region rich in Fe and O but poor in Cr was formed during 

the test (marked in red in Fig. 7), suggesting the development of breakaway corrosion. 

Immediately below this region, Mg, O and Fe were detected together with minor amounts 

of Si, Al, Ca and Na (marked as point 3). This may suggest that the sealant was present 

there at the beginning of the test and then degraded. The presence of Fe is due to outward 

diffusion of this element from the steel, in accordance with the breakaway corrosion. 

Furthermore, the oxide scale at the anodic side appears to be very thick (≈20µm). The 

EDS results collected at point 4 (reported in Table 2) show that this scale was rich in Fe 

whose amount was greater thanfor Cr. This means that there was a non-protective effect 

by the scale grown during the test. A lack of Cr may be the reason of this phenomenon. In 

addition, the positive polarization of the plate may further enhance the oxidation of the 
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steel leading to its corrosion in the absence of the conventional protective layer formed by 

Crofer22APU and composed of Cr2O3 and (Mn,Cr)3O4. 

In Fig.8, an SEM micrograph from an area close to the air side of the sample subjected to 

0.7V is presented. It was apparent that there was no chromia “bridge” in this sample. 

Therefore, the formation of the “bridge” seems to be dependenton the applied voltage and 

was observed only in the samples that were exposed to the higher voltage (1.3V). 

Furthermore, the sealant appears to be intact, without any degradation effects during 

aging of the sample, as shown in Fig.8. 

Therefore, the degradation phenomena seem to be the result from an interaction between 

the glass-ceramic sealant and the steel plates in presence of the higher applied voltage 

(1.3V). Cr-forming alloys are well known to develop Cr-containing volatile species in the 

typical SOFC operating conditions [52,53]. In particular, the main volatile product due to Cr 

vaporization is CrO2(OH)2, even in relatively dry oxidising atmosphere following the 

reaction [52,53]: 

Cr2O3(s) + 2H2O(g) + 3/2O2(g) ↔ 2CrO2(OH)2(g)       eq.1    

When alkali metals (denoted as R) are contained in the glass-ceramic sealants, such as 

Na in the present case, there can be some additional compounds due to reaction between 

CrO2(OH)2 and R2O or ROH and between Cr2O3, O2 and ROH. These reaction 

mechanisms have already been discussed by Ingram et al. [54] with respect to the 

behaviour of potassium in SOFC environments. From their results, eq. 2 can be adopted 

for the alkali metal sodium: 

Cr2O3(s) + 4NaOH(g) + 3/2 O2(g) + 2H2O(g) ↔ 2Na2CrO4(g) + 4H2O(g)                             eq.2 

In order to estimate the driving force of the reaction, the free enthalpy and the Nernst 

potential for eq. 2 were calculated using FactSage® software. For our estimation we have 
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considered NaCr2O4 as a solid phase. At temperature of 800°C the calculation resulted in 

a free reaction enthalpy (∆G0) of -688,9 kJ/mol and a Nernst potential of 1,19V including 6 

electrons involved in the redox reaction.  

Eq. 2 represents a sum of several individual reactions, which can take place one after the 

other or in parallel. In eq. 2 two species Cr (2Cr3+↔ 2Cr6+ + 6e-, electrons produced) and 

O (3/2 O2 + 6e-↔ 3O2-, electrons consumed) change their oxidation state. The total 

reaction in eq. 2 can be also considered as product of consequential reaction steps (eq. 1 

and eq. 3):  

2 CrO2(OH)2(g) + 4 NaOH(g) ↔ Na2CrO4(g) + 4 H2O(g)                           eq. 3 

Where CrO2(OH)2(g) is produced from eq.1. Furthermore, a much higher amount of sodium 

is present on the surface of the solid glass ceramic sealant. Therefore, also the reaction 

where Na2O(s) denotes the sodium dissolved in the glassy phase or contained in the 

crystalline phase nepheline should be possible instead of or in parallel to eq. 3: 

CrO2(OH)2(g) + Na2O(s) ↔ Na2CrO4(g) + H2O(g)eq. 4 

All the previous reactions have Na2CrO4 as product, which is highly volatile at 800°C and 

has a partial pressure much higher than CrO2(OH)2. The same was reported in the case of 

K2CrO4 by Ingram et al. [54].  This means that in case of eq. 2 and eq.4 a much higher Cr 

depletion from the steel is expected than in case of eq.1. A higher Cr-depletion leads to a 

non-protective oxide scale on the surface of the steel causing the corrosion and diffusion 

phenomena highlighted while discussing Fig. 7. Indeed, the reaction of CrO2(OH)2 will 

move the equilibrium of eq. 1 on the right preventing the system to reach an equilibrium 

state and leading to a continuous depletion of Cr from the steel.  

On the one hand the results of the thermodynamic calculation of eq. 2 by FactSage® have 

shown clearly, that the oxidation of Cr2O3 in presence of oxygen has a strongly negative 
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G and is therefore possible at 800°C. On the other hand, our SEM and EDX-results have 

clearly detected a Cr2O3 bridge and dendrites which bridged the two steel substrates (fig 

7). It can be excluded that the layer and the dendrites consist of a hexavalent chromium 

oxide, since CrO3 decomposes above 200°C into Cr2O3 and O2. Hence it can be supposed 

that the formation of Cr2O3 is somewhat forced by an electrochemical potential which has 

a reducing effect. This situation is given by the cathodic polarization of one steel substrate 

effected by the applied potentials of 0,7V and 1,3V. If we assume that the gaseous 

Na2CrO4 species serve as a chromium source for the Cr2O3-bridge, the following reaction 

mechanism can be proposed. In a first step the gaseous Na2CrO4 species condensates on 

the surface of the cathodically polarized steel substrate (Na2CrO4(g)→ Na2CrO4(s)). Caused 

by the cathodic polarization of the steel substrate there exists a shifted electrochemical 

potential, which enables the decomposition of Na2CrO4 according to eq. 5, and due to the 

good electrical conductivity of the formed Cr2O3-scale the reaction can proceed easily. 

2Na2CrO4(s) + 2H2O(g) → Cr2O3(s) + 3/2 O2 + 4NaOH(g)   eq.5 

In fact, eq. 5 is the reverse reaction of eq.2 and by taking into account that the reaction 

has a nominal Nernst-Potential of 1,19 V at 800 °C it can be understood, that the formation 

of the Cr2O3-bridge is observed when potential of 1,3 V is applied. A potential of 0,7 V is 

not high enough in order to enable the reversal reaction according eq.5. 

The NaOH, produced in the previous reaction, could react again with CrO2(OH)2 or with 

Cr2O3 close to the anodic plate to form again Na2CrO4 (eq.2 and 4). A similar mechanism 

is expected at the cathode of a hypothetic cell. The interaction of Na with Cr at high 

applied potentials can lead to a fast degradation of the cathode in case of sealing between 

the cells and metallic frames/interconnects or to a high current shunting in case of sealing 

between the metallic frame and interconnect plates or between two interconnect plates (as 

simulated in the present work). Furthermore, the presence of Na in the sealant represents 



25 
 

a continuous source of this element for the evaporation of Cr and a driving force for the 

degradation phenomena highlighted here. 

As discussed, the application of the voltage plays a fundamental role in these mechanisms 

otherwise similar degradation phenomena would be observed in the case of 0.7V applied 

voltage. An electrical load higher than a threshold (between 0.7V and 1.3V) pushed the 

oxidation reactions of Cr at the anodically polarized interface with formation of volatile Cr-

containing species and its reduction at the cathodically polarized one; thus leading to the 

formation of the Cr2O3 “bridges”, to a fast corrosion of the anodically polarized interconnect 

and to a fast degradation of the sealant close to the air side (Fig. 7).The higher applied 

voltage did not influence only the condensation of Cr2O3 at the cathodically polarized plate, 

but also promoted eq.1 and 2, otherwise corrosion phenomena and sealant degradation 

would be expected also in the sample to which 0.7V were applied. 

The evidence from this study suggests that the presence of Na in the glass-ceramic is not 

enough to activate these evaporation and condensation reactions. Indeed, the degradation 

phenomena were detected only when the higher voltage (1.3V) was applied during the 

test. A possible solution to avoid the degradation described here might involve the 

deposition on the steel of protective coatings such as Al2O3 or YSZ. Indeed, as reported 

previously by Chou et al. [33-35], an alkali containing sealant in contact with coated Cr-

containing steel did not show degradation in the resistivity, thus indicating a limitation in 

the formation of Na2CrO4 and its reduction to Cr2O3 in absence of interconnect surface as 

Chromium source. 
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Figure 7: SEM and EDS maps collected at the air side of the sample subjected to dual atm. test for 100h at 800°C with 1.6V applied 
voltage. 
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Table 2: semi-quantitative EDS point analysis results collected on the points marked in Fig. 7. 

 EDS Points 

Elements (at%) 1 2 3 4 

Cr 45.1 4.6 0.8 3.4 

O 54.9 63 62 60.3 

Fe - 28.7 23.5 36.3 

Mg - 0.1 9.1 - 

Si - 2 0.9 - 

Al - 0.4 0.5 - 

Ca - 0.2 1.7 - 

Na - 1 0.7 - 

Mn - - 0.8 - 
 

 

Figure 8:SEM micrographs of the sample Crofer22APU/V10/Crofer22APU subjected to dual atm. test at 800°C: for 100h with 0.7V 
applied voltage. 

 

Conclusions 

A new Na-containing diopside-based glass ceramic sealant composition was designed to 

match the CTE of the Crofer22APU interconnect. The sealant showed optimal properties 

in terms of sinter-crystallization behaviour (no overlap between sintering and 

crystallization) and CTE (11.3 10-6 K-1). Diopside was detected as the main crystalline 

phase after both the joining treatment as well as after different aging periods. Nepheline 

was also detected as a secondary phase after aging of the glass-ceramic. The sealant 

composition promoted heterogeneous nucleation of diopside at the interface with the 

interconnect and provided a barrier between sodium and Cr2O3. Resistivity measurements 
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were carried out at 800°C for 100h. The results of these tests showed a suitable resistivity 

value for the glass-ceramic subjected to 1.3V (slightly lower than 106 Ω cm) and for the 

Crofer22APU/V10/Crofer22APU joined sample subjected to 0.7V and exposed to dual 

atmosphere (105-106 Ω cm). Significant degradation in the resistivity trend was recorded 

for the Crofer22APU/V10/Crofer22APU joined sample with 1.3V applied. This effect was 

due to the growth of Cr2O3 starting from the anodically polarized interface, which may have 

put in contact the two steel plates, lowering the overall measured resistivity. Together with 

the formation of this compound, in the same sample, breakaway corrosion and the 

degradation of the sealant were detected. The degradation of sealant resistance and 

interconnect corrosion at higher voltage can be explained by presence of Na2CrO4 which is 

volatile at 800°C and can overtake Chromium transport from anodically polarized interface 

to cathodically polarized one. At cathodically polarized interface Na2CrO4 can be 

decomposed applying anodic potential >1.19 V resulting in Cr2O3 which can grow from 

cathodically polarized side into glass forming Cr2O3 bridges decreasing glass isolation 

resistance. Furthermore, the absence of corrosion or sealant degradation in the sample 

subjected to 0.7V suggests that the applied voltage plays a role also in the vaporization of 

Cr-containing species from the steel and not only to their condensation to the catholically 

polarized plate. 

The findings of this research provide insights for the use of Na-containing sealants when 

high applied voltage is used. The conclusions that can be drawn from the present study 

strengthen the idea that the use of a protective coating on the metallic interconnect will 

have a positive impact on the overall behaviour of the system minimizing observed 

corrosion phenomena, in presence of voltage in dual atmosphere. 
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