613 research outputs found

    Fiber-diffraction Interferometer using Coherent Fiber Optic Taper

    Full text link
    We present a fiber-diffraction interferometer using a coherent fiber optic taper for optical testing in an uncontrolled environment. We use a coherent fiber optic taper and a single-mode fiber having thermally-expanded core. Part of the measurement wave coming from a test target is condensed through a fiber optic taper and spatially filtered from a single-mode fiber to be reference wave. Vibration of the cavity between the target and the interferometer probe is common to both reference and measurement waves, thus the interference fringe is stabilized in an optical way. Generation of the reference wave is stable even with the target movement. Focus shift of the input measurement wave is desensitized by a coherent fiber optic taper

    The VLT-FLAMES survey of massive stars: rotation and nitrogen enrichment as the key to understanding massive star evolution

    Full text link
    Rotation has become an important element in evolutionary models of massive stars, specifically via the prediction of rotational mixing. Here, we study a sample of stars, including rapid rotators, to constrain such models and use nitrogen enrichments as a probe of the mixing process. Chemical compositions (C, N, O, Mg and Si) have been estimated for 135 early B-type stars in the Large Magellanic Cloud with projected rotational velocities up to ~300km/s using a non-LTE TLUSTY model atmosphere grid. Evolutionary models, including rotational mixing, have been generated attempting to reproduce these observations by adjusting the overshooting and rotational mixing parameters and produce reasonable agreement with 60% of our core hydrogen burning sample. We find (excluding known binaries) a significant population of highly nitrogen enriched intrinsic slow rotators vsini less than 50km/s incompatible with our models ~20% of the sample). Furthermore, while we find fast rotators with enrichments in agreement with the models, the observation of evolved (log g less than 3.7dex) fast rotators that are relatively unenriched (a further ~20% of the sample) challenges the concept of rotational mixing. We also find that 70% of our blue supergiant sample cannot have evolved directly from the hydrogen burning main-sequence. We are left with a picture where invoking binarity and perhaps fossil magnetic fields are required to understand the surface properties of a population of massive main sequence stars.Comment: ApJL. 10 pages, 1 figure. Updated to match accepted versio

    Core-collapse supernovae in low-metallicity environments and future all-sky transient surveys

    Full text link
    Aims: Massive stars in low-metallicity environments may produce exotic explosions such as long-duration gamma-ray bursts and pair-instability supernovae when they die as core-collapse supernovae (CCSNe). Here we determine the feasibility of searching for these CCSNe in metal-poor dwarf galaxies using various survey strategies. Methods: We determine oxygen abundances and star-formation rates for all spectroscopically typed star-forming galaxies in the Sloan Digital Sky Survey, Data Release 5, within z = 0.04. We then estimate the CCSN rates for sub-samples of galaxies with differing upper-metallicity limits. Using Monte-Carlo simulations we then predict the fraction of these CCSNe that we can expect to detect using different survey strategies. Results: Using a single 2m telescope (with a standard CCD camera) search we predict a detection rate of ~1.3 CCSNe/yr in galaxies with metallicities below 12 + log(O/H) < 8.2 which are within a volume that will allow detailed follow-up with 4m and 8m telescopes (z = 0.04). With a network of seven 2m telescopes we estimate ~9.3 CCSNe/yr could be found, although this would require more than 1,000 hrs of telescope time allocated to the network. Within the same radial distance, a volume-limited search in the future Pan-STARRS PS1 all-sky survey should uncover 12.5 CCSNe/yr in low-metallicity galaxies. Over a period of a few years this would allow a detailed comparison of their properties. We then extend our calculations to determine the total numbers of CCSNe that can potentially be found in magnitude-limited surveys with PS1 (24,000/yr, within z < 0.6), PS4 (69,000/yr, within z < 0.8) and LSST (160,000/yr, within z < 0.9) surveys.Comment: Accepted by journal Astronomy & Astrophysic

    The evolutionary status of Sher25 - implications for blue supergiants and the progenitor of SN1987A

    Full text link
    The blue supergiant Sher25 in the massive Galactic cluster NGC3603 is surrounded by a striking emission line nebula. The nebula contains an equatorial ring and probable bi-polar outflows, and is similar in morphology, mass and kinematics to the structure visible around SN1987A. It has been suggested that both nebulae were ejected while Sher25 and the progenitor of SN1987A were in previous red supergiant phases. We present optical high-resolution spectra of Sher25 and a model photosphere and unified stellar wind analysis which determines atmospheric parameters, mass-loss rate and photospheric abundances. We compare CNO abundances to other Galactic B-type supergiants and find that Sher25 does not appear extreme or abnormal in terms of its photospheric nitrogen and helium abundances. The C/N and N/O ratios are compared to surface abundances predicted by stellar evolutionary calculations and are incompatible with the star having a previous red-supergiant phase. The nebula is likely to have been ejected while the star was a blue supergiant. The results are compatible with some degree of rotationally induced mixing having occurred while the star was on or near the main-sequence. Our analsysis suggests the star has a relatively normal stellar wind and mass-loss rate, and sits comfortably within the wind momentum-luminosity relationship. In light of the evidence regarding massive evolved early-type stars in the Galaxy we suggest there is no object which shows clear evidence of having had a previous red supergiant phase and hence of undergoing blue loops in the HR diagram. [ABRIDGED]Comment: To appear in Astronomy & Astrophysics, 15 page

    The host galaxy and late-time evolution of the Super-Luminous Supernova PTF12dam

    Get PDF
    Super-luminous supernovae of type Ic have a tendency to occur in faint host galaxies which are likely to have low mass and low metallicity. PTF12dam is one of the closest and best studied super-luminous explosions that has a broad and slowly fading lightcurve similar to SN 2007bi. Here we present new photometry and spectroscopy for PTF12dam from 200-500 days (rest-frame) after peak and a detailed analysis of the host galaxy (SDSS J142446.21+461348.6 at z = 0.107). Using deep templates and image subtraction we show that the full lightcurve can be fit with a magnetar model if escape of high-energy gamma rays is taken into account. The full bolometric lightcurve from -53 to +399 days (with respect to peak) cannot be fit satisfactorily with the pair-instability models. An alternative model of interaction with a dense CSM produces a good fit to the data although this requires a very large mass (~ 13 M_sun) of hydrogen free CSM. The host galaxy is a compact dwarf (physical size ~ 1.9 kpc) and with M_g = -19.33 +/- 0.10, it is the brightest nearby SLSN Ic host discovered so far. The host is a low mass system (2.8 x 10^8 M_sun) with a star-formation rate (5.0 M_sun/year), which implies a very high specific star-formation rate (17.9 Gyr^-1). The remarkably strong nebular lines provide detections of the [O III] \lambda 4363 and [O II] \lambda\lambda 7320,7330 auroral lines and an accurate oxygen abundance of 12 + log(O/H) = 8.05 +/- 0.09. We show here that they are at the extreme end of the metallicity distribution of dwarf galaxies and propose that low metallicity is a requirement to produce these rare and peculiar supernovae.Comment: 20 pages, 12 figures, 8 tables, accepted for publication to MNRA

    Optical and Infrared Spectroscopy of the type IIn SN 1998S : Days 3-127

    Full text link
    We present contemporary infrared and optical spectroscopic observations of the type IIn SN 1998S for the period between 3 and 127 days after discovery. In the first week the spectra are characterised by prominent broad emission lines with narrow peaks superimposed on a very blue continuum(T~24000K). In the following two weeks broad, blueshifted absorption components appeared in the spectra and the temperature dropped. By day 44, broad emission components in H and He reappeared in the spectra. These persisted to 100-130d, becoming increasingly asymmetric. We agree with Leonard et al. (2000) that the broad emission lines indicate interaction between the ejecta and circumstellar material (CSM) and deduce that progenitor of SN 1998S appears to have gone through at least two phases of mass loss, giving rise to two CSM zones. Examination of the spectra indicates that the inner zone extended to <90AU, while the outer CSM extended from 185AU to over 1800AU. Analysis of high resolution spectra shows that the outer CSM had a velocity of 40-50 km/s. Assuming a constant velocity, we can infer that the outer CSM wind commenced more than 170 years ago, and ceased about 20 years ago, while the inner CSM wind may have commenced less than 9 years ago. During the era of the outer CSM wind the outflow was high, >2x10^{-5}M_{\odot}/yr corresponding to a mass loss of at least 0.003M_{\odot} and suggesting a massive progenitor. We also model the CO emission observed in SN 1998S. We deduce a CO mass of ~10^{-3} M_{\odot} moving at ~2200km/s, and infer a mixed metal/He core of ~4M_{\odot}, again indicating a massive progenitor.Comment: 22 pages, 14 figures, accepted in MNRA

    Ultra-Luminous Supernovae as a New Probe of the Interstellar Medium in Distant Galaxies

    Full text link
    We present the Pan-STARRS1 discovery and light curves, and follow-up MMT and Gemini spectroscopy of an ultra-luminous supernova (ULSN; dubbed PS1-11bam) at a redshift of z=1.566 with a peak brightness of M_UV=-22.3 mag. PS1-11bam is one of the highest redshift spectroscopically-confirmed SNe known to date. The spectrum is characterized by broad absorption features typical of previous ULSNe (e.g., CII, SiIII), and by strong and narrow MgII and FeII absorption lines from the interstellar medium (ISM) of the host galaxy, confirmed by an [OII]3727 emission line at the same redshift. The equivalent widths of the FeII2600 and MgII2803 lines are in the top quartile of the quasar intervening absorption system distribution, but are weaker than those of gamma-ray burst intrinsic absorbers (i.e., GRB host galaxies). We also detect the host galaxy in pre-explosion Pan-STARRS1 data and find that its UV spectral energy distribution is best fit with a young stellar population age of tau~15-45 Myr and a stellar mass of M \sim (1.1-2.6)x10^9 M_sun (for Z=0.05-1 Z_sun). The star formation rate inferred from the UV continuum and [OII]3727 emission line is ~10 M_sun/yr, higher than in any previous ULSN host. PS1-11bam provides the first direct demonstration that ULSNe can serve as probes of the interstellar medium in distant galaxies. At the present, the depth and red sensitivity of PS1 are uniquely suited to finding such events at cosmologically interesting redshifts (z~1-2); the future combination of LSST and 30-m class telescopes promises to extend this technique to z~4.Comment: Submitted to ApJL; 9 pages; 4 figures; 1 tabl

    Interacting supernovae and supernova impostors. SN 2007sv: the major eruption of a massive star in UGC 5979

    Get PDF
    We report the results of the photometric and spectroscopic monitoring campaign of the transient SN 2007sv. The observables are similar to those of type IIn supernovae, a well-known class of objects whose ejecta interact with pre-existing circum-stellar material. The spectra show a blue continuum at early phases and prominent Balmer lines in emission, however, the absolute magnitude at the discovery of SN 2007sv (M_R = - 14.25 +/- 0.38) indicate it to be most likely a supernova impostor. This classification is also supported by the lack of evidence in the spectra of very high velocity material as expected in supernova ejecta. In addition we find no unequivocal evidence of broad lines of alpha - and/or Fe-peak elements. The comparison with the absolute light curves of other interacting objects (including type IIn supernovae) highlights the overall similarity with the prototypical impostor SN 1997bs. This supports our claim that SN 2007sv was not a genuine supernova, and was instead a supernova impostor, most likely similar to the major eruption of a luminous blue variable.Comment: Accepted for publication in MNRAS. 15 pages, 11 figures, 5 table
    • …
    corecore