244 research outputs found

    Functionalized Mesoporous Silica via an Aminosilane Surfactant Ion Exchange Reaction: Controlled Scaffold Design and Nitric Oxide Release

    Get PDF
    Nitric oxide-releasing mesoporous silica nanoparticles (MSNs) were prepared using an aminosilane-template surfactant ion exchange reaction. Initially, bare silica particles were synthesized under basic conditions in the presence of cetyltrimethylammonium bromide (CTAB). These particles were functionalized with nitric oxide (NO) donor precursors (i.e., secondary amines) via the addition of aminosilane directly to the particle sol and a commensurate ion exchange reaction between the cationic aminosilanes and CTAB. N-Diazeniumdiolate NO donors were formed at the secondary amines to yield NO-releasing MSNs. Tuning of the ion exchange-based MSN modification approach allowed for the preparation of monodisperse particles ranging from 30 to 1100 nm. Regardless of size, the MSNs stored appreciable levels of NO (0.4–1.5 μmol mg–1) with tunable NO release durations (1–33 h) dependent on the aminosilane modification. Independent control of NO release properties and particle size was achieved, demonstrating the flexibility of this novel MSN synthesis over conventional co-condensation and surface grafting strategies

    In-depth mesocrystal formation analysis of microwave-assisted synthesis of LiMnPO4nanostructures in organic solution

    Get PDF
    In the present work, we report on the preparation of LiMnPO4 (lithiophilite) nanorods and mesocrystals composed of self-assembled rod subunits employing microwave-assisted precipitation with processing times on the time scale of minutes. Starting from metal salt precursors and H3PO4 as phosphate source, single-phase LiMnPO4 powders with grain sizes of approx. 35 and 65 nm with varying morphologies were obtained by tailoring the synthesis conditions using rac-1-phenylethanol as solvent. The mesocrystal formation, microstructure and phase composition were determined by electron microscopy, nitrogen physisorption, X-ray diffraction (including Rietveld refinement), dynamic light scattering, X-ray absorption and X-ray photoelectron spectroscopy, and other techniques. In addition, we investigated the formed organic matter by gas chromatography coupled with mass spectrometry in order to gain a deeper understanding of the dissolution\u2013precipitation process. Also, we demonstrate that the obtained LiMnPO4 nanocrystals can be redispersed in polar solvents such as ethanol and dimethylformamide and are suitable as building blocks for the fabrication of nanofibers via electrospinning

    The evolution of bicontinuous polymeric nanospheres in aqueous solution

    Get PDF
    Complex polymeric nanospheres in aqueous solution are desirable for their promising potential in encapsulation and templating applications. Understanding how they evolve in solution enables better control of the final structures. By unifying insights from cryoTEM and small angle X-ray scattering (SAXS), we present a mechanism for the development of bicontinuous polymeric nanospheres (BPNs) in aqueous solution from a semi-crystalline comb-like block copolymer that possesses temperature-responsive functionality. During the initial stages of water addition to THF solutions of the copolymer the aggregates are predominantly vesicles; but above a water content of 53% irregular aggregates of phase separated material appear, often microns in diameter and of indeterminate shape. We also observe a cononsolvency regime for the copolymer in THF–water mixtures from 22 to 36%. The structured large aggregates gradually decrease in size throughout dialysis, and the BPNs only appear upon cooling the fully aqueous dispersions from 35 °C to 5 °C. Thus, the final BPNs are ultimately the result of a reversible temperature-induced morphological transition

    Charakterisierung poröser Materialien mit Methoden der Kleinwinkelstreuung

    No full text

    X-ray scattering of non-graphitic carbon: an improved method of evaluation

    No full text
    corecore