8,216 research outputs found

    Detecting periodicity in experimental data using linear modeling techniques

    Get PDF
    Fourier spectral estimates and, to a lesser extent, the autocorrelation function are the primary tools to detect periodicities in experimental data in the physical and biological sciences. We propose a new method which is more reliable than traditional techniques, and is able to make clear identification of periodic behavior when traditional techniques do not. This technique is based on an information theoretic reduction of linear (autoregressive) models so that only the essential features of an autoregressive model are retained. These models we call reduced autoregressive models (RARM). The essential features of reduced autoregressive models include any periodicity present in the data. We provide theoretical and numerical evidence from both experimental and artificial data, to demonstrate that this technique will reliably detect periodicities if and only if they are present in the data. There are strong information theoretic arguments to support the statement that RARM detects periodicities if they are present. Surrogate data techniques are used to ensure the converse. Furthermore, our calculations demonstrate that RARM is more robust, more accurate, and more sensitive, than traditional spectral techniques.Comment: 10 pages (revtex) and 6 figures. To appear in Phys Rev E. Modified styl

    Multi-Player Diffusion Games on Graph Classes

    Full text link
    We study competitive diffusion games on graphs introduced by Alon et al. [1] to model the spread of influence in social networks. Extending results of Roshanbin [8] for two players, we investigate the existence of pure Nash equilibria for at least three players on different classes of graphs including paths, cycles, grid graphs and hypercubes; as a main contribution, we answer an open question proving that there is no Nash equilibrium for three players on (m x n) grids with min(m, n) >= 5. Further, extending results of Etesami and Basar [3] for two players, we prove the existence of pure Nash equilibria for four players on every d-dimensional hypercube.Comment: Extended version of the TAMC 2015 conference version now discussing hypercube results (added details for the proof of Proposition 1

    Modulation of Thermoelectric Power of Individual Carbon Nanotubes

    Full text link
    Thermoelectric power (TEP) of individual single walled carbon nanotubes (SWNTs) has been measured at mesoscopic scales using a microfabricated heater and thermometers. Gate electric field dependent TEP-modulation has been observed. The measured TEP of SWNTs is well correlated to the electrical conductance across the SWNT according to the Mott formula. At low temperatures, strong modulations of TEP were observed in the single electron conduction limit. In addition, semiconducting SWNTs exhibit large values of TEP due to the Schottky barriers at SWNT-metal junctions.Comment: to be published in Phys. Rev. Let

    The success-index: an alternative approach to the h-index for evaluating an individual's research output

    Get PDF
    Among the most recent bibliometric indicators for normalizing the differences among fields of science in terms of citation behaviour, Kosmulski (J Informetr 5(3):481-485, 2011) proposed the NSP (number of successful paper) index. According to the authors, NSP deserves much attention for its great simplicity and immediate meaning— equivalent to those of the h-index—while it has the disadvantage of being prone to manipulation and not very efficient in terms of statistical significance. In the first part of the paper, we introduce the success-index, aimed at reducing the NSP-index's limitations, although requiring more computing effort. Next, we present a detailed analysis of the success-index from the point of view of its operational properties and a comparison with the h-index's ones. Particularly interesting is the examination of the success-index scale of measurement, which is much richer than the h-index's. This makes success-index much more versatile for different types of analysis—e.g., (cross-field) comparisons of the scientific output of (1) individual researchers, (2) researchers with different seniority, (3) research institutions of different size, (4) scientific journals, etc

    Optimal control strategies for tuberculosis treatment: a case study in Angola

    Get PDF
    We apply optimal control theory to a tuberculosis model given by a system of ordinary differential equations. Optimal control strategies are proposed to minimize the cost of interventions. Numerical simulations are given using data from Angola.Comment: This is a preprint of a paper whose final and definite form will appear in the international journal Numerical Algebra, Control and Optimization (NACO). Paper accepted for publication 15-March-201

    QSO's from Galaxy Collisions with Naked Black Holes

    Get PDF
    In the now well established conventional view (see Rees [1] and references therein), quasi-stellar objects (QSOs) and related active galactic nuclei (AGN) phenomena are explained as the result of accretion of plasma onto giant black holes which are postulated to form via gravitational collapse of the high density regions in the centers of massive host galaxies. This model is supported by a wide variety of indirect evidence and seems quite likely to apply at least to some observed AGN phenomena. However, one surprising set of new Hubble Space Telescope (HST) observations [2-4] directly challenges the conventional model, and the well known evolution of the QSO population raises some additional, though not widely recognized, difficulties. We propose here an alternative possibility: the Universe contains a substantial independent population of super-massive black holes, and QSO's are a phenomenon that occurs due to their collisions with galaxies or gas clouds in the intergalactic medium (IGM). This hypothesis would naturally explain why the QSO population declines very rapidly towards low redshift, as well as the new HST data.Comment: plain TeX file, no figures, submitted to Natur

    Rhythmic dynamics and synchronization via dimensionality reduction : application to human gait

    Get PDF
    Reliable characterization of locomotor dynamics of human walking is vital to understanding the neuromuscular control of human locomotion and disease diagnosis. However, the inherent oscillation and ubiquity of noise in such non-strictly periodic signals pose great challenges to current methodologies. To this end, we exploit the state-of-the-art technology in pattern recognition and, specifically, dimensionality reduction techniques, and propose to reconstruct and characterize the dynamics accurately on the cycle scale of the signal. This is achieved by deriving a low-dimensional representation of the cycles through global optimization, which effectively preserves the topology of the cycles that are embedded in a high-dimensional Euclidian space. Our approach demonstrates a clear advantage in capturing the intrinsic dynamics and probing the subtle synchronization patterns from uni/bivariate oscillatory signals over traditional methods. Application to human gait data for healthy subjects and diabetics reveals a significant difference in the dynamics of ankle movements and ankle-knee coordination, but not in knee movements. These results indicate that the impaired sensory feedback from the feet due to diabetes does not influence the knee movement in general, and that normal human walking is not critically dependent on the feedback from the peripheral nervous system
    corecore