15 research outputs found

    Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site

    Get PDF
    Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G + C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate grows on a suite of sugars, complex polysaccharides and proteinous carbon sources. Accordingly, a versatility of genes encoding carbohydrate-active enzymes (CAZy) and peptidases were identified in the genome. Expression, purification and characterization of an enzyme of the glycoside hydrolase family 13 revealed a starch-degrading capacity and high thermal stability with a melting temperature of 76.4 °C. Altogether, the data obtained point to a new isolate from a marine hydrothermal vent with a large bioprospecting potential.publishedVersio

    Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site

    Get PDF
    Published version. Source at http://doi.org/10.1186/s40793-016-0137-y. License CC BY 4.0.Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G + C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate grows on a suite of sugars, complex polysaccharides and proteinous carbon sources. Accordingly, a versatility of genes encoding carbohydrate-active enzymes (CAZy) and peptidases were identified in the genome. Expression, purification and characterization of an enzyme of the glycoside hydrolase family 13 revealed a starch-degrading capacity and high thermal stability with a melting temperature of 76.4 °C. Altogether, the data obtained point to a new isolate from a marine hydrothermal vent with a large bioprospecting potential

    Isolation and complete genome sequence of the thermophilic Geobacillus sp. 12AMOR1 from an Arctic deep-sea hydrothermal vent site

    Get PDF
    Published version. Source at http://doi.org/10.1186/s40793-016-0137-y. License CC BY 4.0.Members of the genus Geobacillus have been isolated from a wide variety of habitats worldwide and are the subject for targeted enzyme utilization in various industrial applications. Here we report the isolation and complete genome sequence of the thermophilic starch-degrading Geobacillus sp. 12AMOR1. The strain 12AMOR1 was isolated from deep-sea hot sediment at the Jan Mayen hydrothermal Vent Site. Geobacillus sp. 12AMOR1 consists of a 3,410,035 bp circular chromosome and a 32,689 bp plasmid with a G + C content of 52 % and 47 %, respectively. The genome comprises 3323 protein-coding genes, 88 tRNA species and 10 rRNA operons. The isolate grows on a suite of sugars, complex polysaccharides and proteinous carbon sources. Accordingly, a versatility of genes encoding carbohydrate-active enzymes (CAZy) and peptidases were identified in the genome. Expression, purification and characterization of an enzyme of the glycoside hydrolase family 13 revealed a starch-degrading capacity and high thermal stability with a melting temperature of 76.4 °C. Altogether, the data obtained point to a new isolate from a marine hydrothermal vent with a large bioprospecting potential

    Presence of acyl-homoserine lactones in 57 members of the Vibrionaceae family

    Get PDF
    Aims: The aim of this study was to use a sensitive method to screen and quantify 57 Vibrionaceae strains for the production of acyl-homoserine lactones (AHLs) and map the resulting AHL profiles onto a host phylogeny. Methods and Results: We used a high-performance liquid chromatography– tandem mass spectrometry (HPLC-MS/MS) protocol to measure AHLs in spent media after bacterial growth. First, the presence/absence of AHLs (qualitative analysis) was measured to choose internal standard for subsequent quantitative AHL measurements. We screened 57 strains from three genera (Aliivibrio, Photobacterium and Vibrio) of the same family (i.e. Vibrionaceae). Our results show that about half of the isolates produced multiple AHLs, typically at 25–5000 nmol l-1 . Conclusions: This work shows that production of AHL quorum sensing signals is found widespread among Vibrionaceae bacteria and that closely related strains typically produce similar AHL profiles. Significance and Impact of the Study: The AHL detection protocol presented in this study can be applied to a broad range of bacterial samples and may contribute to a wider mapping of AHL production in bacteria, for example, in clinically relevant strains

    Discovery, characterization and engineering of bacterial thermostable cellulose- degrading enzymes

    Get PDF
    Lignocellulose is the most abundant biomass on Earth, and thus our largest organic carbon reservoir. Enzymatic depolymerization of recalcitrant polysaccharides, notably cellulose, is a major cost driver in accessing the renewable energy stored within lignocellulosic biomass. Natural biodiversities may be explored to discover microbial enzymes that have evolved to conquer this task in various environments. We are studying novel enzymes from various biodiversities for the conversion of lignocellulosic materials, using (meta)genome mining and functional screening of fosmid libraries. Targeted biodiversities include deep-sea hot vents of the Arctic mid-ocean ridge (AMOR), the microbiome of the wood-eating Arctic shipworm, thermophilic enrichment cultures from biogas reactors, the Svalbard reindeer gut microbiome, and publicly available metagenomic data from various hot environments. Bioprospecting of the different biodiversities has so far resulted in the discovery of approximately 20 novel enzymes active on lignocellulosic substrates. The significant differences in the origin of the enzymes is reflected in their properties, both beneficial and challenging, and provide us with interesting engineering targets for improved performance in industrial settings. We will present case studies, including work on a novel thermostable cellulase named mgCel6A, with good activity on sulfite-pulped Norway spruce. This enzyme consists of a glycoside hydrolase family 6 catalytic domain (GH6) connected to a family 2 carbohydrate binding module (CBM2) and both the activity profile and predicted structural similarities to known cellulases suggest that mgCel6A is an endo-acting cellulase. Comparison of the full-length enzyme with the catalytic domain showed that the CBM strongly increases substrate binding, while not affecting thermal stability. However, importantly, in reactions with higher substrate concentrations the full-length enzyme was outperformed by the catalytic domain alone, underpinning previous suggestions that CBMs may be less useful in high-consistency bioprocessing. This enzyme is currently being targeted for rational engineering in an effort to decrease the pH optimum and improve the pH stability. Other case studies include GH48 cellulases and lytic polysaccharide monooxygenases (LPMOs). One important aspect of this work concerns the possible assembly of novel enzyme cocktails for lignocellulose processing that can compete with exiting commercial cocktails, which are primarily composed of fungal enzymes. Thus, comparative studies of our most promising bacterial enzymes with their well-known fungal counterparts are also being conducted

    Probing the Effect of Point Mutations at Protein-Protein Interfaces with Free Energy Calculations

    Get PDF
    We have studied the effect of point mutations of the primary binding residue (P1) at the protein-protein interface in complexes of chymotrypsin and elastase with the third domain of the turkey ovomucoid inhibitor and in trypsin with the bovine pancreatic trypsin inhibitor, using molecular dynamics simulations combined with the linear interaction energy (LIE) approach. A total of 56 mutants have been constructed and docked into their host proteins. The free energy of binding could be reliably calculated for 52 of these mutants that could unambiguously be fitted into the binding sites. We find that the predicted binding free energies are in very good agreement with experimental data with mean unsigned errors between 0.50 and 1.03 kcal/mol. It is also evident that the standard LIE model used to study small drug-like ligand binding to proteins is not suitable for protein-protein interactions. Three different LIE models were therefore tested for each of the series of protein-protein complexes included, and the best models for each system turn out to be very similar. The difference in parameterization between small drug-like compounds and protein point mutations is attributed to the preorganization of the binding surface. Our results clearly demonstrate the potential of free energy calculations for probing the effect of point mutations at protein-protein interfaces and for exploring the principles of specificity of hot spots at the interface

    Features and structure of a cold active N-acetylneuraminic acid lyase

    No full text
    N-acetylneuraminate lyases (NALs) are enzymes that catalyze the reversible cleavage and synthesis of sialic acids. They are therefore commonly used for the production of these high-value sugars. This study presents the recombinant production, together with biochemical and structural data, of the NAL from the psychrophilic bacterium Aliivibrio salmonicida LFI1238 (AsNAL). Our characterization shows that AsNAL possesses high activity and stability at alkaline pH. We confirm that these properties allow for the use in a one-pot reaction at alkaline pH for the synthesis of N-acetylneuraminic acid (Neu5Ac, the most common sialic acid) from the inexpensive precursor N-acetylglucosamine. We also show that the enzyme has a cold active nature with an optimum temperature for Neu5Ac synthesis at 20°C. The equilibrium constant for the reaction was calculated at different temperatures, and the formation of Neu5Ac acid is favored at low temperatures, making the cold active enzyme a well-suited candidate for use in such exothermic reactions. The specific activity is high compared to the homologue from Escherichia coli at three tested temperatures, and the enzyme shows a higher catalytic efficiency and turnover number for cleavage at 37°C. Mutational studies reveal that amino acid residue Asn 168 is important for the high kcat. The crystal structure of AsNAL was solved to 1.65 Å resolution and reveals a compact, tetrameric protein similar to other NAL structures. The data presented provides a framework to guide further optimization of its application in sialic acid production and opens the possibility for further design of the enzyme

    Structure and function of a CE4 deacetylase isolated from a marine environment

    Get PDF
    Chitin, a polymer of β(1–4)-linked N-acetylglucosamine found in e.g. arthropods, is a valuable resource that may be used to produce chitosan and chitooligosaccharides, two compounds with considerable industrial and biomedical potential. Deacetylating enzymes may be used to tailor the properties of chitin and its derived products. Here, we describe a novel CE4 enzyme originating from a marine Arthrobacter species (ArCE4A). Crystal structures of this novel deacetylase were determined, with and without bound chitobiose [(GlcNAc)2], and refined to 2.1 Å and 1.6 Å, respectively. In-depth biochemical characterization showed that ArCE4A has broad substrate specificity, with higher activity against longer oligosaccharides. Mass spectrometry-based sequencing of reaction products generated from a fully acetylated pentamer showed that internal sugars are more prone to deacetylation than the ends. These enzyme properties are discussed in the light of the structure of the enzyme-ligand complex, which adds valuable information to our still rather limited knowledge on enzyme-substrate interactions in the CE4 family

    High quality draft genome sequence of Streptomyces sp. strain AW19M42 isolated from a sea squirt in Northern Norway

    No full text
    Here we report the 8 Mb high quality draft genome of Streptomyces sp. strain AW19M42, together with specific properties of the organism and the generation, annotation and analysis of its genome sequence. The genome encodes 7,727 putative open reading frames, of which 6,400 could be assigned with COG categories. Also, 62 tRNA genes and 8 rRNA operons were identified. The genome harbors several gene clusters involved in the production of secondary metabolites. Functional screening of the isolate was positive for several enzymatic activities, and some candidate genes coding for those activities are listed in this report. We find that this isolate shows biotechnological potential and is an interesting target for bioprospecting
    corecore