7 research outputs found

    Charged domain walls in improper ferroelectric hexagonal manganites and gallates

    Get PDF
    Ferroelectric domain walls are attracting broad attention as atomic-scale switches, diodes and mobile wires for next-generation nanoelectronics. Charged domain walls in improper ferroelectrics are particularly interesting as they offer multifunctional properties and an inherent stability not found in proper ferroelectrics. Here we study the energetics and structure of charged walls in improper ferroelectric YMnO3_3, InMnO3_3 and YGaO3_3 by first principles calculations and phenomenological modeling. Positively and negatively charged walls are asymmetric in terms of local structure and width, reflecting that polarization is not the driving force for domain formation. The wall width scales with the amplitude of the primary structural order parameter and the coupling strength to the polarization. We introduce general rules for how to engineer nn- and pp-type domain wall conductivity based on the domain size, polarization and electronic band gap. This opens the possibility of fine-tuning the local transport properties and design pp-nn-junctions for domain wall-based nano-circuitry.Comment: 10 pages, 6 figures, Supp. Info. available on reques

    Application of a long short-term memory for deconvoluting conductance contributions at charged ferroelectric domain walls

    Get PDF
    Ferroelectric domain walls are promising quasi-2D structures that can be leveraged for miniaturization of electronics components and new mechanisms to control electronic signals at the nanoscale. Despite the significant progress in experiment and theory, however, most investigations on ferroelectric domain walls are still on a fundamental level, and reliable characterization of emergent transport phenomena remains a challenging task. Here, we apply a neural-network-based approach to regularize local I(V)-spectroscopy measurements and improve the information extraction, using data recorded at charged domain walls in hexagonal (Er0.99,Zr0.01)MnO3 as an instructive example. Using a sparse long short-term memory autoencoder, we disentangle competing conductivity signals both spatially and as a function of voltage, facilitating a less biased, unconstrained and more accurate analysis compared to a standard evaluation of conductance maps. The neural-network-based analysis allows us to isolate extrinsic signals that relate to the tip-sample contact and separating them from the intrinsic transport behavior associated with the ferroelectric domain walls in (Er0.99,Zr0.01)MnO3. Our work expands machine-learning-assisted scanning probe microscopy studies into the realm of local conductance measurements, improving the extraction of physical conduction mechanisms and separation of interfering current signals. © 2020, The Author(s)

    Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide

    Get PDF
    Utilizing quantum effects in complex oxides, such as magnetism, multiferroicity and superconductivity, requires atomic-level control of the material’s structure and composition. In contrast, the continuous conductivity changes that enable artificial oxide-based synapses and multiconfigurational devices are driven by redox reactions and domain reconfigurations, which entail long-range ionic migration and changes in stoichiometry or structure. Although both concepts hold great technological potential, combined applications seem difficult due to the mutually exclusive requirements. Here we demonstrate a route to overcome this limitation by controlling the conductivity in the functional oxide hexagonal Er(Mn,Ti)O3 by using conductive atomic force microscopy to generate electric-field induced anti-Frenkel defects, that is, charge-neutral interstitial–vacancy pairs. These defects are generated with nanoscale spatial precision to locally enhance the electronic hopping conductivity by orders of magnitude without disturbing the ferroelectric order. We explain the non-volatile effects using density functional theory and discuss its universality, suggesting an alternative dimension to functional oxides and the development of multifunctional devices for next-generation nanotechnology.acceptedVersionPeer reviewe

    Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide

    Get PDF
    Utilizing quantum effects in complex oxides, such as magnetism, multiferroicity and superconductivity, requires atomic-level control of the material’s structure and composition. In contrast, the continuous conductivity changes that enable artificial oxide-based synapses and multiconfigurational devices are driven by redox reactions and domain reconfigurations, which entail long-range ionic migration and changes in stoichiometry or structure. Although both concepts hold great technological potential, combined applications seem difficult due to the mutually exclusive requirements. Here we demonstrate a route to overcome this limitation by controlling the conductivity in the functional oxide hexagonal Er(Mn,Ti)O3 by using conductive atomic force microscopy to generate electric-field induced anti-Frenkel defects, that is, charge-neutral interstitial–vacancy pairs. These defects are generated with nanoscale spatial precision to locally enhance the electronic hopping conductivity by orders of magnitude without disturbing the ferroelectric order. We explain the non-volatile effects using density functional theory and discuss its universality, suggesting an alternative dimension to functional oxides and the development of multifunctional devices for next-generation nanotechnologyWe thank T. Grande for fruitful discussions. D.R.S. and S.M.S. were supported by the Research Council of Norway (project no. 231430/F20 and 275139) and acknowledge UNINETT Sigma2 (project no. NN9264K and ntnu243) for providing the computational resources. A.B.M. was supported by NTNU’s Enabling technologies: Nanotechnology. The Research Council of Norway is acknowledged for the support to the Norwegian Micro- and Nano-Fabrication Facility, NorFab, project no. 245963/F50 and Norwegian Centre for Transmission Electron Microscopy, NORTEM, Grant no. 197405. A.L.D. was funded by the Norwegian Research Council under project no. 274459 Translate. K.S. acknowledges the support of the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 724529), Ministerio de Economia, Industria y Competitividad through grant nos. MAT2016-77100-C2-2-P and SEV-2015-0496, and the Generalitat de Catalunya (grant no. 2017SGR 1506). Z.Y. and E.B. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231 within the Quantum Materials program KC2202. J.A. was supported by the Academy of Finland under project no. 322832. D.M. thanks NTNU for support through the Onsager Fellowship Programme and NTNU Stjerneprogrammet.Peer reviewe
    corecore