216 research outputs found

    The Taste of Carbonation

    Get PDF
    Carbonated beverages are commonly available and immensely popular, but little is known about the cellular and molecular mechanisms underlying the perception of carbonation in the mouth. In mammals, carbonation elicits both somatosensory and chemosensory responses, including activation of taste neurons. We have identified the cellular and molecular substrates for the taste of carbonation. By targeted genetic ablation and the silencing of synapses in defined populations of taste receptor cells, we demonstrated that the sour-sensing cells act as the taste sensors for carbonation, and showed that carbonic anhydrase 4, a glycosylphosphatidylinositol-anchored enzyme, functions as the principal CO_2 taste sensor. Together, these studies reveal the basis of the taste of carbonation as well as the contribution of taste cells in the orosensory response to CO_2

    The Most Recently Discovered Carbonic Anhydrase, CA XV, Is Expressed in the Thick Ascending Limb of Henle and in the Collecting Ducts of Mouse Kidney

    Get PDF
    BACKGROUND: Carbonic anhydrases (CAs) are key enzymes for physiological pH regulation, including the process of urine acidification. Previous studies have identified seven cytosolic or membrane-bound CA isozymes in the kidney. Recently, we showed by in situ hybridization that the mRNA for the most novel CA isozyme, CA XV, is present in the renal cortex. CA XV is a unique isozyme among mammalian CAs, because it has become a pseudogene in primates even though expressed in several other species. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we raised a polyclonal antibody against recombinant mouse CA XV that was produced in a baculovirus/insect cell expression system, and the antibody was used for immunohistochemical analysis in different mouse tissues. Positive immunoreactions were found only in the kidney, where the enzyme showed a very limited distribution pattern. Parallel immunostaining experiments with several other anti-CA sera indicated that CA XV is mainly expressed in the thick ascending limb of Henle and collecting ducts, and the reactions were most prominent in the cortex and outer medulla. CONCLUSION/SIGNIFICANCE: Although other studies have proposed a role for CA XV in cell proliferation, its tightly limited distribution may point to a specialized function in the regulation of acid-base homeostasis

    Mitochondrial carbonic anhydrase VA and VB : Properties and roles in health and disease

    Get PDF
    Carbonic anhydrase V (CA V), a mitochondrial enzyme, was first isolated from guinea pig liver and subsequently identified in mice and humans. Later, studies revealed that the mouse genome contains two mitochondrial CA sequences, named Car5A and Car5B. The CA VA enzyme is most highly expressed in the liver, whereas CA VB shows a broad tissue distribution. Car5A knockout mice showed a predominant role for CA VA in ammonia detoxification, while the roles of CA VB in ureagenesis and gluconeogenesis were evident only in the absence of CA VA. Previous studies have suggested that CA VA is mainly involved in the provision of HCO3 - for biosynthetic processes. In children, mutations in the CA5A gene led to reduced CA activity, and the enzyme was sensitive to increased temperature. The metabolite profiles of these children showed a reduced supply of HCO3 - to the enzymes that take part in intermediary metabolism: carbamoylphosphate synthetase, pyruvate carboxylase, propionyl-CoA carboxylase, and 3-methylcrotonyl-CoA carboxylase. Although the role of CA VB is still poorly understood, a recent study reported that it plays an essential role in human Sertoli cells (hSCs), which sustain spermatogenesis. Metabolic disease associated with CA VA appears to be more common than other inborn errors of metabolism (IEM) and responds well to treatment with N-carbamyl-l-glutamate (NCG). Therefore, early identification of hyperammonemia will allow specific treatment with NCG and prevent neurologic sequelae. CA VA deficiency should therefore be considered a treatable condition in the differential diagnosis of hyperammonemia in neonates and young children. Abstract figure legend Carbonic anhydrase isozymes VA and VB represent mitochondrial enzymes which contribute to several physiological functions mainly in intermediary metabolism. The liver hepatocytes are the main source of carbonic anhydrase VA with weaker signals in brain, testis, and muscle. The VB isozyme is more widely spread in several organs, such as brain, heart, liver, lung, kidney, spleen, intestine, testis, muscle, and pancreas. This article is protected by copyright. All rights reserved.publishedVersionPeer reviewe

    Bicarbonate homeostasis in excitable tissues: role of AE3 Cl⁻/HCO⁻₃ exchanger and carbonic anhydrase XIV interaction

    Get PDF
    Bicarbonate transport and metabolism are key elements of normal cellular function. Two alternate transcripts of anion exchanger 3 (AE3), full-length (AE3fl) and cardiac (AE3c), are expressed in central nervous system (CNS), where AE3 catalyzes electroneutral Cl⁻/HCO3− exchange across the plasma membrane of neuronal and glial cells of CNS. Anion exchanger isoforms, AE3fl and AE3c, associate with the carbonic anhydrases (CA) CAII and CAIV, forming a HCO3− transport metabolon, to maximize HCO3− flux across the plasma membrane. CAXIV, with catalytic domain anchored to the extracellular surface, is also expressed in CNS. Here physical association of AE3 and CAXIV was examined by coimmunoprecipitation experiments, using mouse brain and retinal lysates. CAXIV immunoprecipitated with anti-AE3 antibody, and both AE3 isoforms were immunoprecipitated using anti-CAXIV antibody, indicating CAXIV and AE3 interaction in the CNS. Confocal images revealed colocalization of CAXIV and AE3 in Muller and horizontal cells, in the mouse retina. Cl⁻/HCO3− exchange activity of AE3fl was investigated in transiently transfected human embryonic kidney 293 cells, using intracellular fluorescence measurements of BCECF, to monitor intracellular pH. CAXIV increased the rate of AE3fl-mediated HCO3− transport by up to 120%, which was suppressed by the CA inhibitor acetazolamide. Association of AE3 and CAXIV may represent a mechanism to enhance disposal of waste CO₂ and to balance pH in excitable tissues.Centro de Investigaciones Cardiovasculare

    Modification of carbonic anhydrase II with acetaldehyde, the first metabolite of ethanol, leads to decreased enzyme activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acetaldehyde, the first metabolite of ethanol, can generate covalent modifications of proteins and cellular constituents. However, functional consequences of such modification remain poorly defined. In the present study, we examined acetaldehyde reaction with human carbonic anhydrase (CA) isozyme II, which has several features that make it a suitable target protein: It is widely expressed, its enzymatic activity can be monitored, its structural and catalytic properties are known, and it contains 24 lysine residues, which are accessible sites for aldehyde reaction.</p> <p>Results</p> <p>Acetaldehyde treatment in the absence and presence of a reducing agent (NaBH<sub>3</sub>(CN)) caused shifts in the pI values of CA II. SDS-PAGE indicated a shift toward a slightly higher molecular mass. High-resolution mass spectra of CA II, measured with and without NaBH<sub>3</sub>(CN), indicated the presence of an unmodified protein, as expected. Mass spectra of CA II treated with acetaldehyde revealed a modified protein form (+26 Da), consistent with a "Schiff base" formation between acetaldehyde and one of the primary NH<sub>2 </sub>groups (e.g., in lysine side chain) in the protein structure. This reaction was highly specific, given the relative abundance of over 90% of the modified protein. In reducing conditions, each CA II molecule had reacted with 9–19 (14 on average) acetaldehyde molecules (+28 Da), consistent with further reduction of the "Schiff bases" to substituted amines (N-ethyllysine residues). The acetaldehyde-modified protein showed decreased CA enzymatic activity.</p> <p>Conclusion</p> <p>The acetaldehyde-derived modifications in CA II molecule may have physiological consequences in alcoholic patients.</p

    T Tubules and Surface Membranes Provide Equally Effective Pathways of Carbonic Anhydrase-Facilitated Lactic Acid Transport in Skeletal Muscle

    Get PDF
    We have studied lactic acid transport in the fast mouse extensor digitorum longus muscles (EDL) by intracellular and cell surface pH microelectrodes. The role of membrane-bound carbonic anhydrases (CA) of EDL in lactic acid transport was investigated by measuring lactate flux in muscles from wildtype, CAIV-, CAIX- and CAXIV-single ko, CAIV-CAXIV double ko and CAIV–CAIX–CAXIV-triple ko mice. This was complemented by immunocytochemical studies of the subcellular localization of CAIV, CAIX and CAXIV in mouse EDL. We find that CAXIV and CAIX single ko EDL exhibit markedly but not maximally reduced lactate fluxes, whereas triple ko and double ko EDL show maximal or near-maximal inhibition of CA-dependent lactate flux. Interpretation of the flux measurements in the light of the immunocytochemical results leads to the following conclusions. CAXIV, which is homogeneously distributed across the surface membrane of EDL fibers, facilitates lactic acid transport across this membrane. CAIX, which is associated only with T tubular membranes, facilitates lactic acid transport across the T tubule membrane. The removal of lactic acid from the lumen of T tubuli towards the interstitial space involves a CO2-HCO3- diffusional shuttle that is maintained cooperatively by CAIX within the T tubule and, besides CAXIV, by the CAIV, which is strategically located at the opening of the T tubules. The data suggest that about half the CA-dependent muscular lactate flux occurs across the surface membrane, while the other half occurs across the membranes of the T tubuli.Public Library of Scienc

    Transmembrane carbonic anhydrase isozymes IX and XII in the female mouse reproductive organs

    Get PDF
    Background Carbonic anhydrase (CA) classically catalyses the reversible hydration of dissolved CO2 to form bicarbonate ions and protons. The twelve active CA isozymes are thought to regulate a variety of cellular functions including several processes in the reproductive systems. Methods The present study was designed to investigate the expression of transmembrane CAs, CA IX and XII, in the mouse uterus, ovary and placenta. The expression of CA IX and XII was examined by immunoperoxidase staining method and western blotting. CA II and XIII served as positive controls since they are known to be present in the mouse reproductive tract. Results The data of our study indicated that CA XII is expressed in the mouse endometrium. Only very faint signal was observed in the corpus luteum of the ovary and the placenta remained mainly negative. CA IX showed weak reaction in the endometrial epithelium, while it was completely absent in the ovary and placenta. Conclusion The conservation of CA XII expression in both mouse and human endometrium suggests a role for this isozyme in reproductive physiology.BioMed Central open acces

    Carbonic anhydrases in metazoan model organisms : molecules, mechanisms, and physiology

    Get PDF
    During the past three decades, mice, zebrafish, fruit flies, and Caenorhabditis elegans have been the primary model organisms used for the study of various biological phenomena. These models have also been adopted and developed to investigate the physiological roles of carbonic anhydrases (CAs) and carbonic anhydrase-related proteins (CARPs). These proteins belong to eight CA families and are identified by Greek letters: α, β, γ, δ, ζ, η, θ, and ι. Studies using model organisms have focused on two CA families, α-CAs and β-CAs, which are expressed in both prokaryotic and eukaryotic organisms with species-specific distribution patterns and unique functions. This review covers the biological roles of CAs and CARPs in light of investigations performed in model organisms. Functional studies demonstrate that CAs are not only linked to the regulation of pH homeostasis, the classical role of CAs, but also contribute to a plethora of previously undescribed functions.acceptedVersionPeer reviewe

    Carbonic anhydrase IX promotes tumor growth and necrosis in vivo and inhibition enhances anti-VEGF therapy.

    Get PDF
    PURPOSE: Bevacizumab, an anti-VEGFA antibody, inhibits the developing vasculature of tumors, but resistance is common. Antiangiogenic therapy induces hypoxia and we observed increased expression of hypoxia-regulated genes, including carbonic anhydrase IX (CAIX), in response to bevacizumab treatment in xenografts. CAIX expression correlates with poor prognosis in most tumor types and with worse outcome in bevacizumab-treated patients with metastatic colorectal cancer, malignant astrocytoma, and recurrent malignant glioma. EXPERIMENTAL DESIGN: We knocked down CAIX expression by short hairpin RNA in a colon cancer (HT29) and a glioblastoma (U87) cell line which have high hypoxic induction of CAIX and overexpressed CAIX in HCT116 cells which has low CAIX. We investigated the effect on growth rate in three-dimensional (3D) culture and in vivo, and examined the effect of CAIX knockdown in combination with bevacizumab. RESULTS: CAIX expression was associated with increased growth rate in spheroids and in vivo. Surprisingly, CAIX expression was associated with increased necrosis and apoptosis in vivo and in vitro. We found that acidity inhibits CAIX activity over the pH range found in tumors (pK = 6.84), and this may be the mechanism whereby excess acid self-limits the build-up of extracellular acid. Expression of another hypoxia inducible CA isoform, CAXII, was upregulated in 3D but not two-dimensional culture in response to CAIX knockdown. CAIX knockdown enhanced the effect of bevacizumab treatment, reducing tumor growth rate in vivo. CONCLUSION: This work provides evidence that inhibition of the hypoxic adaptation to antiangiogenic therapy enhances bevacizumab treatment and highlights the value of developing small molecules or antibodies which inhibit CAIX for combination therapy
    corecore