39 research outputs found
Breast cancer risk prediction in women aged 35-50 years: impact of including sex hormone concentrations in the Gail model.
BACKGROUND: Models that accurately predict risk of breast cancer are needed to help younger women make decisions about when to begin screening. Premenopausal concentrations of circulating anti-Müllerian hormone (AMH), a biomarker of ovarian reserve, and testosterone have been positively associated with breast cancer risk in prospective studies. We assessed whether adding AMH and/or testosterone to the Gail model improves its prediction performance for women aged 35-50. METHODS: In a nested case-control study including ten prospective cohorts (1762 invasive cases/1890 matched controls) with pre-diagnostic serum/plasma samples, we estimated relative risks (RR) for the biomarkers and Gail risk factors using conditional logistic regression and random-effects meta-analysis. Absolute risk models were developed using these RR estimates, attributable risk fractions calculated using the distributions of the risk factors in the cases from the consortium, and population-based incidence and mortality rates. The area under the receiver operating characteristic curve (AUC) was used to compare the discriminatory accuracy of the models with and without biomarkers. RESULTS: The AUC for invasive breast cancer including only the Gail risk factor variables was 55.3 (95% CI 53.4, 57.1). The AUC increased moderately with the addition of AMH (AUC 57.6, 95% CI 55.7, 59.5), testosterone (AUC 56.2, 95% CI 54.4, 58.1), or both (AUC 58.1, 95% CI 56.2, 59.9). The largest AUC improvement (4.0) was among women without a family history of breast cancer. CONCLUSIONS: AMH and testosterone moderately increase the discriminatory accuracy of the Gail model among women aged 35-50. We observed the largest AUC increase for women without a family history of breast cancer, the group that would benefit most from improved risk prediction because early screening is already recommended for women with a family history
Circulating anti-Müllerian hormone and breast cancer risk: A study in ten prospective cohorts.
A strong positive association has been observed between circulating anti-Müllerian hormone (AMH), a biomarker of ovarian reserve, and breast cancer risk in three prospective studies. Confirming this association is important because of the paucity of biomarkers of breast cancer risk in premenopausal women. We conducted a consortium study including ten prospective cohorts that had collected blood from premenopausal women. A nested case-control design was implemented within each cohort. A total of 2,835 invasive (80%) and in situ (20%) breast cancer cases were individually matched to controls (n = 3,122) on age at blood donation. AMH was measured using a high sensitivity enzyme-linked immunoabsorbent assay. Conditional logistic regression was applied to the aggregated dataset. There was a statistically significant trend of increasing breast cancer risk with increasing AMH concentration (ptrend across quartiles <0.0001) after adjusting for breast cancer risk factors. The odds ratio (OR) for breast cancer in the top vs. bottom quartile of AMH was 1.60 (95% CI = 1.31-1.94). Though the test for interaction was not statistically significant (pinteraction  = 0.15), the trend was statistically significant only for tumors positive for both estrogen receptor (ER) and progesterone receptor (PR): ER+/PR+: ORQ4-Q1  = 1.96, 95% CI = 1.46-2.64, ptrend <0.0001; ER+/PR-: ORQ4-Q1  = 0.82, 95% CI = 0.40-1.68, ptrend  = 0.51; ER-/PR+: ORQ4-Q1  = 3.23, 95% CI = 0.48-21.9, ptrend  = 0.26; ER-/PR-: ORQ4-Q1  = 1.15, 95% CI = 0.63-2.09, ptrend  = 0.60. The association was observed for both pre- (ORQ4-Q1 = 1.35, 95% CI = 1.05-1.73) and post-menopausal (ORQ4-Q1  = 1.61, 95% CI = 1.03-2.53) breast cancer (pinteraction  = 0.34). In this large consortium study, we confirmed that AMH is associated with breast cancer risk, with a 60% increase in risk for women in the top vs. bottom quartile of AMH
Respectful leadership:Reducing performance challenges posed by leader role incongruence and gender dissimilarity
We investigate how respectful leadership can help overcome the challenges for follower performance that female leaders face when working (especially with male) followers. First, based on role congruity theory, we illustrate the biases faced by female leaders. Second, based on research on gender (dis-)similarity, we propose that these biases should be particularly pronounced when working with a male follower. Finally, we propose that respectful leadership is most conducive to performance in female leader–male follower dyads compared with all other gender configurations. A multi-source field study (N = 214) provides partial support for our hypothesis. While our hypothesized effect was confirmed, respectful leadership seems to be generally effective for female leaders irrespective of follower gender, thus lending greater support in this context to the arguments of role congruity rather than gender dissimilarity
Characterization of inhibin/activin subunit, follistatin, and activin type II receptors in human ovarian cancer cell lines: a potential role in autocrine growth regulation
Although ovarian cancer is the most common gynecological malignancy with a relatively poor 5-yr survival record, the mechanism(s) by which these tumors arise is not well understood. A role for inhibins and activins in regulating this transformation is suggested by the detection of circulating alpha or dimeric inhibin in some patients with ovarian cancer and by the alpha inhibin knockout mouse, in which development of gonadal tumors in 100% of homozygotes is associated with greatly elevated activin levels. To develop diagnostic tools with greater specificity for ovarian cancers, the present study was targeted at characterizing the biosynthetic capacity of the epithelial ovarian cancer cell lines from the American Type Culture Collection with respect to inhibin, activin, the related activin-binding protein follistatin (FS), and activin receptor type II. In addition, the functional capacity of this system was investigated by examining the ability of activin and FS to modulate cellular proliferation. All six cell lines contained abundant messenger RNA (mRNA) for activin receptor type II, but no inhibin alpha-subunit mRNA was detected in any cell line. Two cell lines contained mRNA for activin beta B-subunit (CaOV4 and SKOV3), one cell line contained beta A-subunit mRNA (SW626), and one cell line contained both (ES2); the latter also contained FS mRNA. FS mRNA was detected in another cell line (PA-1) that contained no detectable activin beta-subunit mRNA. Finally, one cell line (CaOV3) contained neither beta-subunit nor FS mRNA. Protein secretion was also examined. Consistent with the mRNA studies, the two cell lines containing FS mRNA secreted FS (PA-1 and ES2 cells), whereas three of the remaining lines secreted activin (A or B). In the cell line containing neither FS nor beta-subunit mRNA, no FS or activin could be detected. Finally, none of the cell lines secreted detectable immunoreactive inhibin. The effects of exogenous activin and FS on cellular proliferation were examined in these cell lines. No response was detected in the two cell lines that secreted FS (PA-1 and ES2). For the four cell lines not synthesizing FS, treatment with activin (1-100 ng/ml) resulted in an increase, whereas FS treatment (1-100 ng/ml) resulted in a decrease in cellular proliferation, as determined by [3H]thymidine incorporation. The response to activin correlated negatively with endogenous activin production, suggesting that autocrine activin production may be involved with cell proliferation. The differential expression and production of inhibin/activin subunits, activin receptors, and follistatin as well as the range of responses to exogenous activin among six ovarian epithelial cancer cell lines suggest that this family of hormones may be important in regulating cell proliferation in the ovary. Whether primary tumors have the same profile and the degree to which these results can be generalized to additional forms of ovarian cancer remain to be determine
Circulating anti-Müllerian hormone and breast cancer risk: A study in ten prospective cohorts
A strong positive association has been observed between circulating anti-Müllerian hormone (AMH), a biomarker of ovarian reserve, and breast cancer risk in three prospective studies. Confirming this association is important because of the paucity of biomarkers of breast cancer risk in premenopausal women. We conducted a consortium study including ten prospective cohorts that had collected blood from premenopausal women. A nested case-control design was implemented within each cohort. A total of 2,835 invasive (80%) and in situ (20%) breast cancer cases were individually matched to controls (n = 3,122) on age at blood donation. AMH was measured using a high sensitivity enzyme-linked immunoabsorbent assay. Conditional logistic regression was applied to the aggregated dataset. There was a statistically significant trend of increasing breast cancer risk with increasing AMH concentration (ptrend across quartiles < 0.0001) after adjusting for breast cancer risk factors. The odds ratio (OR) for breast cancer in the top versus bottom quartile of AMH was 1.60 (95% CI = 1.31-1.94). Though the test for interaction was not statistically significant (pinteraction = 0.15), the trend was statistically significant only for tumors positive for both estrogen receptor (ER) and progesterone receptor (PR): ER+/PR+: ORQ4-Q1 = 1.96, 95% CI = 1.46-2.64, ptrend <0.0001; ER+/PR-: ORQ4-Q1 = 0.82, 95% CI = 0.40-1.68, ptrend = 0.51; ER-/PR+: ORQ4-Q1 = 3.23, 95% CI =0.48-21.9, ptrend = 0.26; ER-/PR-: ORQ4-Q1 = 1.15, 95% CI = 0.63-2.09, ptrend = 0.60. The association was observed for both pre- (ORQ4-Q1= 1.35, 95% CI= 1.05-1.73) and post-menopausal (ORQ4-Q1 =1.61, 95% CI = 1.03 - 2.53) breast cancer (pinteraction = 0.34). In this large consortium study, we confirmed that AMH is associated with breast cancer risk, with a 60% increase in risk for women in the top vs. bottom quartile of AMH.</p
Circulating anti-Müllerian hormone and breast cancer risk: A study in ten prospective cohorts.
A strong positive association has been observed between circulating anti-Müllerian hormone (AMH), a biomarker of ovarian reserve, and breast cancer risk in three prospective studies. Confirming this association is important because of the paucity of biomarkers of breast cancer risk in premenopausal women. We conducted a consortium study including ten prospective cohorts that had collected blood from premenopausal women. A nested case-control design was implemented within each cohort. A total of 2,835 invasive (80%) and in situ (20%) breast cancer cases were individually matched to controls (n = 3,122) on age at blood donation. AMH was measured using a high sensitivity enzyme-linked immunoabsorbent assay. Conditional logistic regression was applied to the aggregated dataset. There was a statistically significant trend of increasing breast cancer risk with increasing AMH concentration (ptrend across quartiles <0.0001) after adjusting for breast cancer risk factors. The odds ratio (OR) for breast cancer in the top vs. bottom quartile of AMH was 1.60 (95% CI = 1.31-1.94). Though the test for interaction was not statistically significant (pinteraction  = 0.15), the trend was statistically significant only for tumors positive for both estrogen receptor (ER) and progesterone receptor (PR): ER+/PR+: ORQ4-Q1  = 1.96, 95% CI = 1.46-2.64, ptrend <0.0001; ER+/PR-: ORQ4-Q1  = 0.82, 95% CI = 0.40-1.68, ptrend  = 0.51; ER-/PR+: ORQ4-Q1  = 3.23, 95% CI = 0.48-21.9, ptrend  = 0.26; ER-/PR-: ORQ4-Q1  = 1.15, 95% CI = 0.63-2.09, ptrend  = 0.60. The association was observed for both pre- (ORQ4-Q1 = 1.35, 95% CI = 1.05-1.73) and post-menopausal (ORQ4-Q1  = 1.61, 95% CI = 1.03-2.53) breast cancer (pinteraction  = 0.34). In this large consortium study, we confirmed that AMH is associated with breast cancer risk, with a 60% increase in risk for women in the top vs. bottom quartile of AMH