177 research outputs found

    Light scattering by optically anisotropic scatterers II: T--matrix computations for radially and uniformly anisotropic droplets

    Get PDF
    This is the second paper in a series on light scattering from optically anisotropic scatterers embedded in an isotropic medium. The apparently complex T-matrix theory involving mixing of angular momentum components turns out to be an efficient approach to calculating scattering in these systems. We present preliminary results of numerical calculations of the scattering by spherical droplets in some simple cases. The droplets contain optically anisotropic material with local radial or uniform anisotropy. We concentrate on cases in which the scattering is due only to the local optical anisotropy within the scatterer. For radial anisotropy we find non-monotonic dependence of the scattering cross-section on the degree of anisotropy can occur in a regime for which both the Rayleigh and semi-classical theories are inapplicable. For uniform anisotropy the cross-section is strongly dependent on the angle between the incident light and the optical axis, and for larger droplets this dependence is non-monotonic.Comment: 14 pages, 6 figures, uses RevTex

    Modeling planar degenerate wetting and anchoring in nematic liquid crystals

    Get PDF
    We propose a simple surface potential favoring the planar degenerate anchoring of nematic liquid crystals, i.e., the tendency of the molecules to align parallel to one another along any direction parallel to the surface. We show that, at lowest order in the tensorial Landau-de Gennes order-parameter, fourth-order terms must be included. We analyze the anchoring and wetting properties of this surface potential. In the nematic phase, we find the desired degenerate planar anchoring, with positive scalar order-parameter and some surface biaxiality. In the isotropic phase, we find, in agreement with experiments, that the wetting layer may exhibit a uniaxial ordering with negative scalar order-parameter. For large enough anchoring strength, this negative ordering transits towards the planar degenerate state

    Hysteresis in Two-Dimensional Liquid Crystal Models

    Get PDF
    We make a numerical study of hysteresis loop shapes within a generalized two-dimensional Random Anisotropy Nematic (RAN) model at zero temperature. The hysteresis loops appear on cycling a static external ordering field. Ordering in these systems is history dependent and involves interplay between the internal coupling constant J, the anisotropy random field D, and the ordering external field H. Here the external field is represented by a traceless tensor, analogous to extension-type fields in continuum mechanics. The calculations use both a mean field approach and full lattice simulations. Our analysis suggests the existence of two qualitatively different solutions, which we denote as symmetric and symmetry breaking. For the set of parameters explored, only the symmetric solutions are stable. Both approaches yield qualitatively similar hysteresis curves, which are manifested either by single or double loops. But the quantitative differences indicate that mean field estimates are only of limited predictive value

    Influence of Homeotropic Anchoring Walls upon Nematic and Smectic Phases

    Full text link
    McMillan liquid crystal model sandwiched between strong homeotropic anchoring walls is studied. Phase transitions between isotropic, nematic, and smectic A phases are investigated for wide ranges of an interaction parameter and of the system thickness. It is confirmed that the anchoring walls induce an increase in transition temperatures, dissappearance of phase transitions, and an appearance of non-spontaneous nematic phase. The similarity between influence of anchoring walls and that of external fields is discussed.Comment: 5 pages, 6 figure

    Liquid crystal anchoring transitions on aligning substrates processed by plasma beam

    Full text link
    We observe a sequence of the anchoring transitions in nematic liquid crystals (NLC) sandwiched between the hydrophobic polyimide substrates treated with the plasma beam. There is a pronounced continuous transition from homeotropic to low tilted (nearly planar) alignment with the easy axis parallel to the incidence plane of the plasma beam (the zenithal transition) that takes place as the exposure dose increases. In NLC with positive dielectric anisotropy, a further increase in the exposure dose results in in-plane reorientation of the easy axis by 90 degrees (the azimuthal transition). This transition occurs through the two-fold degenerated alignment characteristic for the second order anchoring transitions. In contrast to critical behavior of anchoring, the contact angle of NLC and water on the treated substrates monotonically declines with the exposure dose. It follows that the surface concentration of hydrophobic chains decreases continuously. The anchoring transitions under consideration are qualitatively interpreted by using a simple phenomenological model of competing easy axes which is studied by analyzing anchoring diagrams of the generalized polar and non-polar anchoring models.Comment: revtex4, 18 pages, 10 figure

    Surface alignment and anchoring transitions in nematic lyotropic chromonic liquid crystal

    Full text link
    The surface alignment of lyotropic chromonic liquid crystals (LCLCs) can be not only planar (tangential) but also homeotropic, with self-assembled aggregates perpendicular to the substrate, as demonstrated by mapping optical retardation and by three-dimensional imaging of the director field. With time, the homeotropic nematic undergoes a transition into a tangential state. The anchoring transition is discontinuous and can be described by a double-well anchoring potential with two minima corresponding to tangential and homeotropic orientation.Comment: Accepted for publication in Phys. Rev. Lett. (Accepted Wednesday Jun 02, 2010

    Binary separation in very thin nematic films: thickness and phase coexistence

    Full text link
    The behavior as a function of temperature of very thin films (10 to 200 nm) of pentylcyanobiphenyl (5CB) on silicon substrates is reported. In the vicinity of the nematic/isotropic transition we observe a coexistence of two regions of different thicknesses: thick regions are in the nematic state while thin ones are in the isotropic state. Moreover, the transition temperature is shifted downward following a 1/h^2 law (h is the film thickness). Microscope observations and small angle X-ray scattering allowed us to draw a phase diagram which is explained in terms of a binary first order phase transition where thickness plays the role of an order parameter.Comment: 5 pages, 3 figures, submitted to PRL on the 26th of Apri

    Annihilation of edge dislocations in smectic A liquid crystals

    No full text
    This paper presents a theoretical study of the annihilation of edge dislocations in the same smectic plane in a bulk smectic-A phase. We use a time-dependent Landau-Ginzburg approach where the smectic ordering is described by the complex order parameter psi( r--> ,t) =eta e(iphi) . This quantity allows both the degree of layering and the position of the layers to be monitored. We are able to follow both precollision and postcollision regimes, and distinguish different early and late behaviors within these regimes. The early precollision regime is driven by changes in the phi ( r--> ) configuration. The relative velocity of the defects is approximately inversely proportional to the interdefect separation distance. In the late precollision regime the symmetry changes within the cores of defects also become influential. Following the defect collision, in the early postcollision stage, bulk layer order is approached exponentially in time. At very late times, however, there seems to be a long-time power-law tail in the order parameter fluctuation relaxation
    • …
    corecore