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We make a numerical study of hysteresis loop shapes within a generalized two-dimensional Random Anisotropy Nematic (RAN)
model at zero temperature.Thehysteresis loops appear on cycling a static external ordering field.Ordering in these systems is history
dependent and involves interplay between the internal coupling constant J, the anisotropy randomfieldD, and the ordering external
fieldH. Here the external field is represented by a traceless tensor, analogous to extension-type fields in continuummechanics.The
calculations use both a mean field approach and full lattice simulations. Our analysis suggests the existence of two qualitatively
different solutions, which we denote as symmetric and symmetry breaking. For the set of parameters explored, only the symmetric
solutions are stable. Both approaches yield qualitatively similar hysteresis curves, which are manifested either by single or double
loops. But the quantitative differences indicate that mean field estimates are only of limited predictive value.

1. Introduction

Understanding the effect of disorder on structures reached
via continuous symmetry breaking is of interest for various
branches of physics [1, 2]. Such systems exhibit almost
unavoidably topological defects [3, 4], which are in general
stabilized by disorder [5–7]. The resulting structures are in
general rich in metastable states, which are separated from
each other by relatively high energy barriers with respect
to thermal energies. Transitions between competing states
often require local topological changes, which are in general
energetically costly. Consequently, the sample history can be
significant even on the macroscopic properties of the system.

The pioneering investigations of spatially randomly per-
turbed system exhibiting continuous symmetry breaking
were carried out inmagnetism [8–10]. Other studies [11] show
that disorder strongly influences phase behavior, as a result
of the presence of Goldstone modes in gauge fields reflecting
broken symmetries [11]. For example, the Larkin-Imry-Ma
theorem [11, 12] claims that even infinitesimally weak random
field-type disorder destabilizes long range order (LRO) with
respect to short range order (SRO). However, later studies

[13] demonstrate the occurrence rather of quasi-long-range-
order (QLRO), characterized by algebraic decay of spatial
correlations. A well-known example of such a system is the
Bragg glass phase in dirty superconductors [14]. Glass-like
properties are typically observed in these systems, which
as a rule manifest history-dependent macroscopic responses
when subject to an external ordering field [10]. Because
of their potential applications in various memory storage
devices, the hysteresis response [15, 16] to cycling external
fields are of particular interest. Even in simple minimal
models [17], the competition between the inherent ordering
interactions, the disorder strength, and the external ordering
field can lead to a relatively rich set of behaviors.

In recent decades, there have been several studies of
the influence of disorder on continuous symmetry broken
phases in a number of different liquid crystal (LC) phases
[6, 7, 18, 19]. These studies include a rich variety of dif-
ferent LC phases and also enable the type and strength of
the disorder to be relatively well controlled. As such they
represent a useful testing ground for the investigation of
universal features related with disorder. We note that liquid
crystals are relatively easily experimentally accessible due
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to their liquid character, softness, and optical anisotropy
[20]. The simplest representative is the nematic uniaxial
LC phase, whose local mesoscopic orientational ordering is
typically represented by the nematic director field n, where
the directions ±n are physically equivalent [21, 22], and
|n| = 1. In the bulk, equilibrium nematic LCs tend to
align parallel along a single symmetry direction, in analogous
fashion to local magnetization m in ferromagnets. Random
field-type disorder in LC structures can be imposed using a
number of different procedures. Well-known examples are
LCs confined to porous matrices such as controlled-pore
glasses, aerogels or Russian glasses, or LC-aerosil mixtures
[6, 18]. The latter systems are of particular interest because
one can tune disorder strength, and even the type of disorder,
by varying aerosil nanoparticle concentration [6, 23, 24].

However, the symmetries ofn andmdiffer. Consequently,
some features observed in magnetic and LC systems could
also differ [19]. For example, magnetic systems exhibit line
defects only with integer values of the correspondingwinding
number𝑚 [3, 20]. But the head-to-tail invariance of 𝑛 permits
nematic LCs also to exhibit line defects characterized by half-
integer winding numbers.

In this paper we consider the hysteresis properties of a
randomly perturbed two-dimensional nematic LC described
by theRandomAnisotropyNematic (RAN) [25] latticemodel
at zero temperature. The orientational order of the LC is
measured by a tensor nematic order parameter. The external
extensional ordering field is a traceless tensor and possesses
the symmetry of an extensional stress of a type shown often
in continuum mechanics [26]. We then calculate the global
nematic response to the cycling of this field. Our particular
interest lies in the existence of qualitatively different types
of hysteresis loop. The calculations use both lattice-type
simulations and also a mean field-type approach.

The plan of the paper is as follows. In Section 2 we
formulate the problem. We introduce our two-dimensional
lattice model in terms of tensor nematic order parameter at
zero temperature. In Section 3 we derive mean field solution
for average nematic ordering for a given external ordering
field. Results are presented in Section 4 where we focus
on possible shapes of hysteresis loops on cycling the static
external field. We analyze both mean field behaviour and
lattice model simulation results. In the final section we
summarize the results of the calculations.

2. Formulation of Problem

2.1. Model. We consider a 𝑑-dimensional lattice model of
𝑛 dimensional nematic liquid crystal molecules. These are
subject to external fields as well as local disordering random
fields.Themodel is a generalization of the random anisotropy
nematic (RAN) model discussed elsewhere by some of
the present writers [25], which in turn is a random field
generalization of the classic Lebwohl-Lasher lattice model
[27] of a nematic liquid crystal. A rotor, whose direction is
defined by n ≡ −n, is placed at each site 𝑖. In this paper,
𝑑 = 𝑛 = 2.

Orientational properties of the rotors at site 𝑖 are deter-
mined by the traceless tensor quantityQ𝑖:

𝑄
𝑖

𝛼𝛽
= 𝑛
𝑖

𝛼
𝑛
𝑖

𝛽
−
1

𝑛

𝛿
𝛼𝛽
. (1)

Greek indices label components of the Cartesian coordinate
system, while Latin indices determine lattice sites. We will
refer to the quantities𝑄𝑖

𝛼𝛽
as tensor spins, to distinguish them

from vector spins, whose hysteresis properties have been well
studied in the literature [17].

The Hamiltonian of the system reads
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where repeated Greek indices in a product indicate the
application of a summation convention.

The meaning of the terms in (2) is as follows.
(a) The first term involves interactions between nearest

neighbor sites and favours parallel orientation of
neighboring LC molecules. 𝐽 > 0 is a measure of the
interaction strength between the nearest neighbors
(𝑛𝑛). The factor 1/2 is introduced to avoid double
counting. Later we will suppose 𝑧 nearest neighbors,
with 𝑧 = 4 in the square lattice, and 𝑧 = 6 in the
hexagonal lattice. We refer to this term as the internal
field term.

(b) The second term describes the coupling with an
external tensor ordering field 𝐻

𝛼𝛽
. We define this in

terms of a single parameter 𝐻, and a set of principal
axes, which in this case coincide with 𝑥 and 𝑦 axes:
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(3)

where e
𝑥
is the unit vector in the 𝑥 direction and

e
𝑦
is the unit vector in the 𝑦 direction. This tensor

field takes the form of an extension field, of the type
that frequently occurs in continuum mechanics. We
address elsewhere in the paper the difference between
this tensor form and the uniaxial random tensor field
introduced by Cleaver et al. [25], but note at this stage
only that for 𝑛 = 2 the two forms are completely
equivalent. We will refer to this term as the external
field term.

(c) The final term represents the coupling between the
local tensor spin and a time-independent quenched
local field of uniform strength𝐷 > 0, where the tensor
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𝛼𝛽
= 𝑒
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−
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𝛿
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(4)

is expressed in terms of unit vectors e𝑖 ≡ −e𝑖. The
directions {e𝑖} are drawn randomly from an isotropic
orientational distribution, and the directions at differ-
ent sites are uncorrelated.As in the case of the external
field term, this tensor is an extensional field. We refer
to this term as the random field term.

Note that the only difference between the terms in (3) and (4)
is that the field in (3) aligns the spins in the same direction
at each site, whereas in (4) the direction of the aligning field
varies from site to site.
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2.2. Angular Representation. In the (𝑥, 𝑦) Cartesian frame,
the dynamical state of the system can be parameterized at
each site in terms of a local spin direction n𝑖 = (cos 𝜃

𝑖
, sin 𝜃
𝑖
)

and a locally favored orientation e𝑖 = (cos𝛼
𝑖
, sin𝛼

𝑖
). Then it

is readily shown that
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The energy can now be expressed in terms of the quantities
{𝜃
𝑖
, 𝛼
𝑖
}. Substituting (5) into (2) we obtain
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Although the model is originally expressed in terms of local
tensor quantities, we note the similarity of this form to the
classical random field𝑋𝑌 vector spin model Hamiltonian
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(7)

where now 𝐽 is the local spin interaction energy, �̃� is a
magnetic field, and 𝐷 is the coupling with a random field
direction. Apart from the factors of 2 in the angles and dif-
ferences in convention concerning the values of parameters,
(6) and (7) are extremely similar. We expect the results of
statistical mechanism calculations to mirror this.

We further observe that the field energy at a site is
−𝐻
𝛼𝛽
𝑄
𝑖
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= −𝐻 cos 2𝜃

𝑖
. Thus positive 𝐻 prefers alignment

in the 𝑥 direction, while negative𝐻 prefers alignment in the
𝑦 direction. Likewise the random energy at site 𝑖 is given
by −𝐷𝑁𝑖
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𝑄
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= −(1/2)𝐷 cos 2(𝜃
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𝑖
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𝑖
.

2.3. Order Parameters. Our study concerns the average
behaviour of the whole lattice. We can define a mean tensor
order parameter
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where ⟨⋅ ⋅ ⋅ ⟩ indicates spatial averaging. Thus the key order
parameters are
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sin 2𝜃
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where the averaging is over the all𝑁 sites. In the limits𝐻 →

±∞, the external field dominates the internal coupling and
the random field terms, and hence 𝜂(𝐻 → +∞) → 1,
whereas 𝜂(𝐻 → −∞) → −1. This corresponds to a rotation
from the 𝑥 to the 𝑦 directions as𝐻 goes from +∞ to −∞.

Thequantity S responds toH, and thuswe expect it to take
the same form. The order parameter 𝜂 tends to adjust to the
imposed field𝐻. In this case the principal axes of S lie in the
same directions as those of the forcing field𝐻

𝛼𝛽
. By contrast,

the quantity 𝜁 is an off-diagonal term in the principal frame
of reference. In general, the symmetry of the system might
suggest 𝜁 = 0, if we may suppose 𝑦 and −𝑦 to be equivalent. If
𝜁 ̸= 0, the symmetry of the system is broken, and we would in
general expect a pair of solutions with positive and negative
values. In this case, the principal axes of S will be rotated at
an (plus or minus) oblique with respect toH. We henceforth
refer to solutions with 𝜁 = 0 and 𝜁 ̸= 0 as symmetric solutions
and symmetry breaking solutions, respectively.

2.4. Procedure. The dynamics of the system at 𝑇 = 0 is
governed by the instantaneous local field at site 𝑖, given by
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where the local fields 𝐺𝑖
𝛼𝛽

are necessarily symmetric and
traceless. Each individual tensor spin seeks to minimize the
local energy

H
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, (11)

where we bear in mind that ∑
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̸= H. The sum of
the local energies does not equal the total Hamiltonian,
because of the need to include a compensating factor of
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, to avoid double counting of nearest

neighbor interaction terms.
The dynamics of the system proceeds in discrete time,

such that𝑄𝑖
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In the 𝑛 = 2, 𝑑 = 2 case discussed here, this only involves
ensuring that
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(b) the normalization of𝑄𝑖
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(𝑡+1), given by (1), is correct.

We thus reach the result that
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Given a lattice configuration of random tensor fields𝑁𝑖
𝛼𝛽

and
a starting configuration of spinsQ𝑖(0), the discrete dynamics
is iterated until a stable configuration, or equivalently a fixed
point of the dynamics is reached. The condition for stability
at site 𝑖, from (12), is then that

1
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) .
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This corresponds to a local minimum of the energy, but
not necessarily, of course, a global minimum. The local field
combines the randomfield, the internal field, and the external
field. Which of these dominates depends on a number of
factors. If the magnitude of the external field is sufficiently
large, other terms must be a small perturbation. Likewise, if
the magnitude of the internal field is small compared to the
random field, it can never play more than a minor role, even
at low external fields. Finally, the history of the sample also
plays a major role. Under some circumstances it is hard to
destroy previously well-established order.

We study the hysteretic behavior of ensembles of spins at
zero temperature. In each numerical experiment we keep the
same lattice with fixed value of 𝐽 > 0 and 𝐷 > 0 and fixed
values of𝛼

𝑖
at each site.The ordering field strength𝐻 is cycled

between very large positive (𝐻 = 𝐻max > 0) and negative
(𝐻 = −𝐻max) values. The energy is first minimised at large
positive𝐻, corresponding to the vector e

𝑖
aligning along the

𝑥 axis at all sites. The field is progressively reduced in small
steps (the “down” part of the cycle). At each step, a new energy
minimum is sought, starting from the previous equilibrium
configuration, and following an energy-downhill procedure.
Eventually, after many steps, 𝐻 is large and negative, and all
{e
𝑖
} essentially lie along the 𝑦 direction, that is, rotated by 𝜋/2

with respect to their original direction. The process is then
reversed, and 𝐻 is taken from −∞ to +∞ (the “up” part of
the cycle).

We also develop mean field equations to describe this
process and compare these results with the results of our
simulations.Hysteresis corresponds to unambiguously differ-
ent values of the order parameters during the up and down
parts of the cycle. We also examine in detail the process of
relaxation and tensor spin rotation.

3. Mean Field Approximation

3.1. The Local Field. In the following we calculate ordering
properties of an ensemble driven by Hamiltonian defined in
(2), using a mean field approximation valid in the limit that
all sites interact equally with all others.This approach follows
previous work by Strogatz et al. [28], who were interested
in conduction in charge density waves, and, by Shukla and
Kharwanlang [17], who focused on the much more closely
related problem of random vector spins.

A mean field theory requires the determination of self-
consistent local field. This involves ignoring correlations

between sites in (10), leading to a mean local field at site 𝑖
given by
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3.2. Symmetric Solution. Assuming no symmetries are bro-
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using a single variable. From the definition (9a) it follows that
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and hence the equation for 𝜃
𝑖
is

cos 2𝜃
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(17)
The reader should note the strong analogy between procedure
outlined above and other work in the mean field theory
of disordered systems at zero temperature (see, e.g., [17,
28]) The philosophy is similar to that of mean field theory
in temperature-dependent nonglassy materials. However,
unlike in the case of temperature-dependent nonrandom
systems, as far as we are aware, there is no detailed theory
discussing the accuracy and dimensional dependence of
mean field theories in these disordered systems. There is, of
course, an expectation, based on the applicability of mean
field theory in temperature-dependent nonglassy materials,
that mean field theory becomes more accurate in the limits
of long-ranged interactions and high dimensionality. At this
stage, we merely present the mean field results because the
calculation is heuristically appealing and at this stage the only
approximation available.

The self-consistent equation for 𝜂 involves taking the
average, which we do by integration:

𝜂 =
1

𝜋

∫

𝜋

0

𝑑𝛼 ⟨cos 2𝜃
𝑖 (𝛼)⟩ , (18)
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leading to a final self-consistent equation of
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(19)

This equation is exactly of the same formas that in the Shukla-
Kharwanlang𝑋𝑌model solution [17], apart from scaling.

3.3. Symmetry Breaking Solution. Note that we might expect
the liquid crystal direction to swing around, rather than just
to change from𝑥 to𝑦, so that thewhole system swings around
coherently. Then we need to take into account also the order
parameter 𝜁; see (9b). Now (8) becomes

S = (

𝜂 𝜁

𝜁 −𝜂

) ,

𝐺

= (

𝐻 +
1

2

𝐷 cos 2𝛼
𝑖
+
1

2

𝐽𝑧𝜂
1

2

𝐷 sin 2𝛼
𝑖
+
1

2

𝐽𝑧𝜁

1

2

𝐷 sin 2𝛼
𝑖
+
1

2

𝐽𝑧𝜁 −𝐻 −
1

2

𝐷 cos 2𝛼
𝑖
−
1

2

𝐽𝑧𝜂

) .

(20)

Requesting parallel orientation of 𝑄𝑖 and 𝐺 it follows

𝑄
𝑖

𝛼𝛽
=
1

2

(

cos 2𝜃
𝑖

sin 2𝜃
𝑖

sin 2𝜃
𝑖
− cos 2𝜃

𝑖

)

= 𝜆(

𝐻 +
1

2

𝐷 cos 2𝛼
𝑖
+
1

2

𝐽𝑧𝜂
1

2

𝐷 sin 2𝛼
𝑖
+
1

2

𝐽𝑧𝜁

1

2

𝐷 sin 2𝛼
𝑖
+
1

2

𝐽𝑧𝜁 −𝐻 −
1

2

𝐷 cos 2𝛼
𝑖
−
1

2

𝐽𝑧𝜂

) .

(21)

The (two) self-consistent equation is now

𝜂 =
1

𝜋

∫

𝜋

0

𝑑𝛼((𝐻 +
1

2

𝐷 cos 2𝛼 + 1

2

𝐽𝑧𝜂)

⋅ {[𝐻 +
1

2

𝐷 cos 2𝛼 + 1

2

𝐽𝑧𝜂]

2

+ [
1

2

𝐷 sin 2𝛼 + 1

2

𝐽𝑧𝜁]

2

}

−1/2

) ,

𝜁 =
1

𝜋

∫

𝜋

0

𝑑𝛼((𝐻 +
1

2

𝐷 sin 2𝛼 + 1

2

𝐽𝑧𝜁)

⋅ {[𝐻 +
1

2

𝐷 cos 2𝛼 + 1

2

𝐽𝑧𝜂]

2

+ [
1

2

𝐷 sin 2𝛼 + 1

2

𝐽𝑧𝜁]

2

}

−1/2

) .

(22)

3.4. Effective Energy. The self-consistent equations can be
derived from an effective energy per site which we define as

𝜀 (𝜂, 𝜁) =
1

4

𝐽𝑧 (𝜂
2
+𝜁
2
) − 𝐸dis (𝜂, 𝜁) ,

𝐸dis =
1

𝜋

⋅ ∫

𝜋

0

𝑑𝛼 [(𝐻 +
1

2

𝐷 cos 2𝛼 + 1

2

𝐽𝑧𝜂)

2

+(
1

2

𝐷 sin 2𝛼 + 1

2

𝐽𝑧𝜁)

2

]

1/2

.

(23)

With this definition of the effective energy, the self-consistent
equations become

𝜕𝜀

𝜕𝜂

= 0;
𝜕𝜀

𝜕𝜁

= 0. (24)

In the restricted theory (𝜁 = 0), corresponding to symmetric
solutions, the coercive field occurs when

𝜕
2
𝜀

𝜕𝜂
2
= 0. (25)

4. Numerical Results

We fix the value of 𝐽 > 0 and 𝐷 > 0 at zero temperature
and focus on the hysteretic behavior of ensembles on cycling
the ordering field strength𝐻. We first analyze behavior using
themean field approximation. Afterwards we perform amore
accurate lattice model simulation.

We determine the ordering properties of the system on
cycling 𝐻 from +𝐻max > 0 to −𝐻max and back to +𝐻max.
We solve equations iteratively for a given set of external
parameters. A simulation is stopped when the difference
between the new and old configuration is sufficiently small.
In this context the criterion of smallness is that at each site
the absolute difference between the previous and the updated
configuration is below 10−5.

In practice we begin simulations at a high enough value
of 𝐻 for which 𝜂 ∼ 1 and 𝜁 = 0. Next we decrease the field
for a small enough step Δ𝐻 and calculate the new solution by
using the previous solution as an initial guess. In such a way
we obtain {𝜂(𝐻), 𝜁(𝐻)} curves by carrying out one cycle in
𝐻 values. We choose a large enough step Δ𝐻 which does not
affect {𝜂(𝐻), 𝜁(𝐻)} profiles.
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Figure 1: Mean field approximation. Dependence of 𝜂(𝐻) on external field𝐻 through a complete hysteresis cycle. Either no hysteresis, single
loop hysteresis, or double loop hysteresis is observed. (a) 𝐽 = 1; dashed line: 𝐷 = 0.3, full line: 𝐷 = 0.8, and dotted line: 𝐷 = 1.2. (b) 𝐷 = 1;
full line: 𝐽 = 0.5, dashed line: 𝐽 = 1.2, and dotted line: 𝐽 = 2.

4.1. Mean Field Results. We solve (22) iteratively using the
Mathematica software [29]. For a specific set of parameters
we stop iterations when the differences |𝜂(𝑖+1) − 𝜂

(𝑖)
| and

|𝜁
(𝑖+1)

− 𝜁
(𝑖)
| between the 𝑖th and 𝑖 + 1th iteration steps are

below 10−5.
Qualitatively different solutions on cycling 𝐻 are shown

in Figure 1. In Figure 1(a) we vary𝐷 for 𝐽 = 1 and conversely
in Figure 1(b) we vary 𝐽 for 𝐷 = 1. In all cases studied we
obtain only symmetric solutions; that is, we find that 𝜁 =

0 within numerical accuracy for all set of parameters and
system histories. In dependence of the ratio 𝜇 = 𝐷/𝐽 we
observe either (i) no hysteresis, (ii) a single hysteresis loop,
or (iii) a double hysteresis loop, in 𝜂(𝐻). For relatively low
values 𝜇 we obtain hysteretic behavior, where values of 𝜂
switch at a critical value of𝐻 = 𝐻

𝑐
(𝜇) between 𝜂 ∼ ±1. With

increasing values of 𝜇departures froma rectangularly shaped
hysteretic profile become increasingly more pronounced.
In addition the width of the hysteresis loop decreases. On
further increasing 𝜇, a double hysteretic loop begins to occur
at 𝜇 = 𝜇

(1)

𝑐
(e.g., 𝜇(1)

𝑐
= 𝐷
(1)

𝑐
/𝐽 ∼ 0.7 for 𝐽 = 1). This persists

till 𝜇 = 𝜇
(2)

𝑐
(e.g., 𝜇(2)

𝑐
= 𝐷
(2)

𝑐
/𝐽 ∼ 1.2 for 𝐽 = 1), beyond which

we observe gradual evolution in 𝜂(𝐻) without hysteresis.
In Figure 2 we plot the effective energy per site 𝜀 versus 𝜂

for specific values of 𝐷 and 𝐻; 𝐽 = 1. The energy is
calculated using (23). In Figure 2(a) we demonstrate the case
corresponding to the coercive field𝐻

𝑐
defined by (25). In the

case shown𝐻
𝑐
= 0.22 (𝐻

𝑐
= −0.22) for the “up” (down) part

of the cycle for 𝐷 = 0.3. The corresponding hysteresis loop
is plotted in Figure 1(a) with the dashed line. For |𝐻| < |𝐻

𝑐
|

the 𝜀(𝜂) dependence exhibits double minima and at 𝐻 = 𝐻
𝑐

one minimum ceases to exist. In Figure 2(b) we show typical
free energy landscape in the regime where double hysteresis

loop exists. In the case shown 𝐷 = 0.8 and 𝐻 = ±0.09

corresponding to the double hysteresis loop depictedwith the
full line in Figure 1(a).

The observed behavior can be qualitatively understood in
the following way. In the limit 𝜇 ≫ 1 the disorder dominantly
influences structural behavior if 𝐻 < 𝐷. Therefore, for
𝐻 = 0 it is always the case that 𝜂 = 0 for a large enough
system because the disorder enforces isotropic symmetry. A
finite value of 𝐻 breaks the symmetry of the system and
consequently 𝜂 ̸= 0. Because 𝐽 ≪ 𝐷 some degree of local
disorder field preference prevails in the regime 𝐷 < 𝐻.
Consequently the collective ordering tendency favored by the
interaction constant 𝐽 is always overwhelmed, either by the
external field 𝐻 or by the local random nematic disorder
𝐷. Conversely, in the limit 𝜇 ∼ 0 the collective behavior
tendency favored by the constant 𝐽 is large if 𝐽 < 𝐻.Therefore,
for a relatively weak ordering field 𝐻 the system tends to
be aligned along a symmetry breaking direction, which is
history dependent, giving rise to a pronounced single loop
hysteresis behavior.

4.2. Lattice Simulation. In the lattice simulation we calculate
the local field tensor defined by (10) and align 𝑄

𝑖

𝛼𝛽
parallel

to it. In one sweep we update in such a way all the lattice
sites of a system. The sweeps are repeated until at each site
the difference | tr(𝑄𝑖,new

𝛼𝛽
−𝑄
𝑖,old
𝛼𝛽

)| between the previous (𝑄𝑖,old
𝛼𝛽

)

and new (𝑄
𝑖,new
𝛼𝛽

) configuration is below 10−5, signalling that
a fixed point structure is reached. From it we calculate
order parameters 𝜂 and 𝜁 using (9a) and (9b). We carried
simulations for the system size 316 × 316 (≈105) for which
the finite size effects were negligible.
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Figure 2: The mean field effective energy per site 𝜀 versus 𝜂 for different values of𝐻 and𝐷, 𝐽 = 1, symmetric solutions. (a)𝐷 = 0.3; full line:
𝐻 = 𝐻

𝑐
= 0.22 obtained for the “up” part of the single loop hysteresis cycle; dashed line:𝐻

𝑐
= −0.22 obtained for the “down” part of the cycle.

Note that the physically sensible regime of 𝜂 is restricted to the interval [−1, 1]. (b) 𝐷 = 0.8; full line:𝐻 = 0.09 obtained for the “up” part of
the double loop hysteresis cycle; dashed line:𝐻 = −0.09 obtained for the “down” part of the cycle.

0.0 0.5 1.0

0.0

0.5

1.0

−1.0

−0.5

−1.0 −0.5

D = 1

𝜂

H

Figure 3: Lattice simulation𝐷 = 1: dependence of 𝜂(𝐻) on external
field 𝐻 through a complete hysteresis cycle. We observe either (a)
𝜇 = 4 (dashed line), no hysteresis; (b) 𝜇 = 0.05 (rectangularly
shaped), single loop hysteresis; (c) 𝜇 = 0.15 (dash-dotted line),
double loop hysteresis; or (d) 𝜇 = 2, S-shaped single loop hysteresis.

Simulations confirmed our MFA results regarding the
absence of the symmetry breaking solutions. Furthermore, also
in this case three topologically different responses on cycling
𝐻 were obtained (i.e., no hysteresis, single hysteresis loop,

or double hysteresis loops). However, hysteresis behavior on
varying the ratio 𝜇 = 𝐷/𝐽 exhibits quantitatively and in some
regimes also qualitatively different behavior.

Typical behavior on varying 𝜇 = 𝐷/𝐽 is shown in
Figure 3, where field cycles are calculated for 𝐷 = 1. On
increasing 𝐽 (i.e., decreasing 𝜇) we observe the following
behavior. For 𝜇 ≪ 1 we obtain roughly rectangularly shaped
hysteresis loop, where configurations switch between 𝜇 =

±1. Initially on decreasing 𝜇 the hysteresis loop width Δ𝐻 is
gradually shrinking towards zero.Within numerical accuracy
we obtain Δ𝐻 = 0 in the interval between 𝜇 ∼ 0.01 and
𝜇 = 𝜇

(2)

𝑐
∼ 0.1. For 𝜇 > 𝜇

(2)

𝑐
a double hysteresis loop appears

which persists till 𝜇(1)
𝑐

∼ 0.22. Above this value we obtain S-
shaped hysteresis loopwhereΔ𝐻 gradually decreases. Finally,
above 𝜇(0)

𝑐
∼ 3.3 no hysteresis is observed.

5. Conclusion

In our numerical study we consider two-dimensional lat-
tice model of nematic LC ordering in presence of an
external ordering field and local disordering random field.
We use a generalized Random Anisotropy Nematic model
where we introduce an external tensor ordering field of
the type frequently encountered in continuum mechanics.
Our approach resembles work by Shukla and Kharwanlang
[17], who examined the shape of hysteresis loops on cycling
a statical external ordering field using random field 𝑋𝑌

model at zero temperature. Despite different symmetries of
order parameters the latter approach and our model yield
similar Hamiltonians in angular presentation of orientational
ordering.
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We first calculated ordering properties of generalized
RAN model using the mean field approach. We derived a
self-consistent expression for average scalar nematic order
parameters. In general we obtain two qualitatively different
solutions to which we refer as symmetric solutions and
broken symmetry solutions. In the first type of solutions the
principal axes of mean nematic tensor order parameter and
of the external tensor field coincide. On contrary in the
latter type of solutions the system’s nematic order parameter
possesses off diagonal terms within the principal frame of
reference imposed by H. For the set of parameters explored
in our simulations we obtained only symmetric solutions, well
represented by single scalar order parameter 𝜂.

We were particularly interested in hysteresis curves
resulting when the forcing static external field was cycled in
the interval {−𝐻max, 𝐻max > 0}, such that the value of 𝐻max
is sufficient to impose a relatively large average alignment
along e

𝑥
(e
𝑦
) for 𝐻 = 𝐻max (𝐻 = −𝐻max), corresponding

to 𝜂 ∼ 1 (𝜂 ∼ −1). We calculated hysteresis loops at zero
temperature for a fixed value of the ordering interaction and
disorder strength, represented by positive constants 𝐽 and𝐷.
Both mean field and lattice simulation approaches yielded
qualitatively similar responses on cycling the forcing field.
The hysteresis loop was either absent or can consist of single
or double loops. Single loops were obtained for relatively low
ratios 𝐷/𝐽. For 𝐷/𝐽 ∼ 1, double loops could emerge. In
this case no hysteresis is observed at small values of 𝐻. For
large values of𝐻 two loops appear in a narrow window of𝐻
values for positive and negative values of 𝐻, symmetrically
placed with respect to 𝐻 = 0. However, both approaches
yield quantitatively different results suggesting that mean
field results well predict only qualitative shape of hysteresis
loops.

It is of some interest to pose the question as to why the
mean field theory is notmore accurate.Themean field theory
has been constructed, following the work of Shukla and
Kharwanlang [17], following earlier work on time-dependent
systems by Strogatz et al. [28]. The heuristic philosophy
of this disorder-based mean field theory resembles that of
standard mean field theories in the temperature domain
(e.g., Curie-Weiss theory [30], or the well-known Maier-
Saupe theory [31] in liquid crystals). There have of course
been extensive studies of the circumstances in which thermal
mean-field theories might be supposed to be reliable, both
in terms of critical exponents and numerical predictions of
phase transition temperatures. In general this is true for
long-ranged potentials and sufficiently high dimensions, and
presumably this is the case here also, butmore detailed studies
are required for these disorder-based mean field theories. At
this stage all we can do is to state that the mean field theories
are heuristically appealing andmight thus be expected to give
some insight into what might be expected.

We note the relationship between our work and a recent
paper involving some of the present authors [32]. This paper
considered the finite temperature zero field behavior of the
𝑛 = 3, 𝑑 = 3 version of the model under discussion
here, subject to a number of different cooling regimes. In
this case too, hysteresis and history-dependent properties are
found. There is surely a relation between field-dependent

and temperature-dependent hysteresis, but further studies
are required to elucidate it properly. In [32], the zero-field
properties are intimately connected to the nature of long
distance correlations. But here, at zero temperature in a
field, we are only concerned with the properties of the total
system. It seems likely that having a strong-field history
(essentially a field-cooled system), that long-range order is
maintained until the system is reoriented. However, to be
sure, further size-dependent simulations are necessary, and
the finite temperature hysteresis properties could in principle
be different from the zero-temperature properties even at
infinitesimally small temperatures. A detailed comparison
with [32] is not currently possible, as the dependence of the
various properties on 𝑑 and 𝑛 is not known at this stage.

The problem posed in this paper is a pilot study of
a three-dimensional liquid crystal in a random field. The
addition of a third spin and a third spatial dimension presents
some computational challenges. It may change the qualitative
properties of the hysteresis cycle, in the same way that it
does change the qualitative properties of the low temperature
phase. The physical problem is that of a liquid crystal in
a porous system, in which the volume of the enclosing
porous material is a small proportion of the total volume but
nevertheless is sufficiently strong to localize the liquid crystal.
The hypothesis is that such systems are well described by
random field systems of some sort. However, much detailed
study is still required to validate this hypothesis, both in
terms of comparison between models and comparison with
experiment. The present paper merely indicates that some
features of the hysteresis behaviour of systems of liquid
crystals in pores seem to occur in even quite simple random
field models.

We note from the points above that the primary motiva-
tion of this paper is theoretical and concerns the properties
of random field models. This general problem has attracted
a considerable degree of interest. The rather peculiar trace-
free maximally biaxial imposed field has been chosen so that
one can cycle reversibly from a positive to a negative field
and back, in such a way that But one might also ask the
question as to whether the question as posed finds some
experimental application. In fact random anisotropy models
have been applied, particularly by Terentjev and coworkers
[33–37], and more recently by Lopatina and Selinger [38],
to nematic elastomers and related systems. For these cases, a
biaxial stress field with the symmetry discussed in this paper
is a natural external field, while “shape memory” is a natural
concomitant of the order parameter memory discussed here.
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