41 research outputs found

    Change in dense shelf water and Adelie land bottom water precipitated by iceberg calving

    Get PDF
    Antarctic Bottom Water supplies the deep limb of the global overturning circulation and ventilates the abyssal ocean. Antarctic Bottom Water has warmed, freshened, and contracted in recent decades, but the causes remain poorly understood. We use unique multiyear observations from the continental shelf and deep ocean near the Mertz Polynya to examine the sensitivity of this bottom water formation region to changes on the continental shelf, including the calving of a large iceberg. Postcalving, the seasonal cycle of Dense Shelf Water (DSW) density almost halved in amplitude and the volume of DSW available for export reduced. In the deep ocean, the density and volume of Adelie Land Bottom Water decreased sharply after calving, while oxygen concentrations remained high, indicating continued ventilation by DSW. This natural experiment illustrates how local changes in forcing over the Antarctic continental shelf can drive large and rapid changes in the abyssal ocean

    Common Issues in Verification of Climate Forecasts and Projections

    Get PDF
    With increased interest in climate forecasts and projections, it is important to understand more about their sources and levels of skill. A starting point here is to describe the nature of the skill associated with forecasts and projections. Climate forecasts and projections typically both include time varying forcing of the climate, but only forecasts have initial conditions set close to the observed climate state. Climate forecasts therefore derive skill from both initial conditions and from forcing. The character of the initial condition skill and forcing skill is different. Skill from initial conditions results in a narrowing of expectations relative to a climatological distribution and points toward a more favoured part of the distribution. Forcing skill could result from a shift in the preferred parts of the climatological distribution in response to forcing, or it could result from a shift in the entire distribution, or both. Assessments of forcing skill require time averages of the target variable that are long enough so that the contributions from internal variations are small compared to the forced response. The assessment of skill of climate forecasts and projections is inherently partial because of the small number of repeated trials possible on typical climate time scales but is nonetheless the only direct measure of their performance

    Stabilization of dense Antarctic water supply to the Atlantic Ocean overturning circulation

    Get PDF
    The lower limb of the Atlantic overturning circulation is resupplied by the sinking of dense Antarctic Bottom Water (AABW) that forms via intense air–sea–ice interactions next to Antarctica, especially in the Weddell Sea. In the last three decades, AABW has warmed, freshened and declined in volume across the Atlantic Ocean and elsewhere, suggesting an ongoing major reorganization of oceanic overturning. However, the future contributions of AABW to the Atlantic overturning circulation are unclear. Here, using observations of AABW in the Scotia Sea, the most direct pathway from the Weddell Sea to the Atlantic Ocean, we show a recent cessation in the decline of the AABW supply to the Atlantic overturning circulation. The strongest decline was observed in the volume of the densest layers in the AABW throughflow from the early 1990s to 2014; since then, it has stabilized and partially recovered. We link these changes to variability in the densest classes of abyssal waters upstream. Our findings indicate that the previously observed decline in the supply of dense water to the Atlantic Ocean abyss may be stabilizing or reversing and thus call for a reassessment of Antarctic influences on overturning circulation, sea level, planetary-scale heat distribution and global climate

    Global perspectives on observing ocean boundary current systems

    Get PDF
    Ocean boundary current systems are key components of the climate system, are hometo highly productive ecosystems, and have numerous societal impacts. Establishmentof a global network of boundary current observing systems is a critical part of ongoingdevelopment of the Global Ocean Observing System. The characteristics of boundarycurrent systems are reviewed, focusing on scientific and societal motivations forsustained observing. Techniques currently used to observe boundary current systemsare reviewed, followed by a census of the current state of boundary current observingsystems globally. The next steps in the development of boundary current observingsystems are considered, leading to several specific recommendations
    corecore