15 research outputs found

    The von Hippel-Lindau Chuvash mutation in mice alters cardiac substrate and high energy phosphate metabolism

    Get PDF
    Hypoxia-inducible factor (HIF) appears to function as a global master regulator of cellular and systemic responses to hypoxia. HIF-pathway manipulation is of therapeutic interest, however global, systemic upregulation of HIF may have as yet unknown effects on multiple processes. We utilized a mouse model of Chuvash polycythemia (CP), a rare genetic disorder which modestly increases expression of HIF target genes in normoxia, to understand what these effects might be within the heart. An integrated in and ex vivo approach was employed. In comparison to wild-type controls, CP mice had evidence (using in vivo MRI) of pulmonary hypertension, right ventricular hypertrophy, and increased left ventricular ejection fraction. Glycolytic flux (measured using 3H glucose) in the isolated, contracting, perfused CP heart was 1.8-fold higher. Net lactate efflux was 1.5-fold higher. Furthermore, in vivo 13C magnetic resonance spectroscopy (MRS) of hyperpolarized 13C1 pyruvate revealed a 2-fold increase in real-time flux through lactate dehydrogenase in the CP hearts, and a 1.6-fold increase through pyruvate dehydrogenase. 31P MRS of perfused CP hearts under increased workload (isoproterenol infusion) demonstrated increased depletion of phosphocreatine relative to ATP. Intriguingly, no changes in cardiac gene expression were detected. In summary, a modest systemic dysregulation of the HIF pathway resulted in clear alterations in cardiac metabolism and energetics. However, in contrast to studies generating high HIF levels within the heart, the CP mice showed neither the predicted changes in gene expression nor any degree of LV impairment. We conclude that the effects of manipulating HIF on the heart are dose-dependent. New and noteworthy This is the first integrative metabolic and functional study of the effects of modest HIF manipulation within the heart. Of particular note, the combination (and correlation) of perfused heart metabolic flux measurements with the new technique of real-time in vivo MR spectroscopy using hyperpolarized pyruvate is a novel development

    On the pivotal role of PPARa in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury

    Get PDF
    The role of peroxisome proliferator activated alpha (PPARα) -mediated metabolic remodeling in cardiac adaptation to hypoxia has yet to be defined. Here, mice were housed in hypoxia for 3 weeks before in vivo contractile function was measured using cine magnetic resonance (MR) imaging. In isolated, perfused hearts, energetics were measured using 31P MR spectroscopy and glycolysis and fatty acid oxidation were measured using 3H labelling. Compared with normoxic, chow-fed control mouse heart, hypoxia decreased PPARα expression, fatty acid oxidation and mitochondrial UCP3 levels, while increasing glycolysis, all of which served to maintain normal ATP concentrations and thereby ejection fractions. A high-fat diet increased cardiac PPARα expression, fatty acid oxidation and UCP3 levels, with decreased glycolysis. Hypoxia was unable to alter the high PPARα expression or reverse the metabolic changes caused by the high fat diet, with the result that ATP concentrations and contractile function decreased significantly. The adaptive metabolic changes caused by hypoxia in control mouse hearts were found to have already occurred in PPARα-/- mouse hearts, and sustained function in hypoxia despite an inability for further metabolic remodelling. We conclude that decreased cardiac PPARα expression is essential for adaptive metabolic remodelling in hypoxia, but is prevented by dietary fat

    The role of the hypoxia-inducible pathway in metabolism and cardiopulmonary physiology

    No full text
    The research in this thesis investigated the role of the hypoxia-inducible factor (HIF) family of transcription factors in metabolism and cardiopulmonary physiology. Specifically, the effects of HIF on ventilatory control, carotid body morphology, and cardiac metabolism and function were studied using a murine model of a genetic disorder of oxygen sensing known as Chuvash polycythaemia. HIF coordinates oxygen-regulated gene expression throughout all organ systems, thereby orchestrating cellular, tissue and systemic responses to hypoxia. HIF is primarily regulated by oxygen-dependent prolyl hydroxylase-domain enzymes (PHDs) that initiate its degradation via the von Hippel-Lindau protein (VHL). In Chuvash polycythaemia, a homozygous VHL mutation in humans causes generalised stabilisation of HIF in euoxia, resulting in profound changes in cardiopulmonary physiology, exercise and metabolism. The Chuvash mouse model provides an opportunity to further characterise the role of HIF in different organ systems. Chapter 2 of this thesis introduces the murine model, demonstrating an increase in haemoglobin and haematocrit in the Chuvash mice as well as a marked reduction in body weight. Chapter 3 describes the ventilatory and carotid body study. Chuvash mice were shown to have elevated baseline ventilation in euoxia and marked ventilatory sensitivity to hypoxia. These findings were accompanied by changes within the carotid body, including hyperplasia, hypertrophy and altered ultrastructure of the oxygen-sensing type I cells. Chapter 4 of this thesis describes the study into cardiac metabolism, energetics and function. Chuvash hearts were found to have increased glycolytic flux and lactate production (the latter both in and ex vivo), with altered myocardial energetics. Despite this, left ventricular function remained normal, although in vivo cine MRI revealed clear evidence of pulmonary hypertension and right ventricular hypertrophy. Overall, this thesis provides evidence that the PHD-VHL-HIF axis plays a major role in calibrating the hypoxic response in the principal organ systems responsible for oxygen uptake, delivery and utilisation.</p

    The role of the hypoxia-inducible pathway in metabolism and cardiopulmonary physiology

    No full text
    The research in this thesis investigated the role of the hypoxia-inducible factor (HIF) family of transcription factors in metabolism and cardiopulmonary physiology. Specifically, the effects of HIF on ventilatory control, carotid body morphology, and cardiac metabolism and function were studied using a murine model of a genetic disorder of oxygen sensing known as Chuvash polycythaemia. HIF coordinates oxygen-regulated gene expression throughout all organ systems, thereby orchestrating cellular, tissue and systemic responses to hypoxia. HIF is primarily regulated by oxygen-dependent prolyl hydroxylase-domain enzymes (PHDs) that initiate its degradation via the von Hippel-Lindau protein (VHL). In Chuvash polycythaemia, a homozygous VHL mutation in humans causes generalised stabilisation of HIF in euoxia, resulting in profound changes in cardiopulmonary physiology, exercise and metabolism. The Chuvash mouse model provides an opportunity to further characterise the role of HIF in different organ systems. Chapter 2 of this thesis introduces the murine model, demonstrating an increase in haemoglobin and haematocrit in the Chuvash mice as well as a marked reduction in body weight. Chapter 3 describes the ventilatory and carotid body study. Chuvash mice were shown to have elevated baseline ventilation in euoxia and marked ventilatory sensitivity to hypoxia. These findings were accompanied by changes within the carotid body, including hyperplasia, hypertrophy and altered ultrastructure of the oxygen-sensing type I cells. Chapter 4 of this thesis describes the study into cardiac metabolism, energetics and function. Chuvash hearts were found to have increased glycolytic flux and lactate production (the latter both in and ex vivo), with altered myocardial energetics. Despite this, left ventricular function remained normal, although in vivo cine MRI revealed clear evidence of pulmonary hypertension and right ventricular hypertrophy. Overall, this thesis provides evidence that the PHD-VHL-HIF axis plays a major role in calibrating the hypoxic response in the principal organ systems responsible for oxygen uptake, delivery and utilisation.This thesis is not currently available in ORA

    The role of atmosphere feedbacks during ENSO in the CMIP3 models

    Get PDF
    Several studies using ocean-atmosphere GCMs suggest that the atmospheric component plays a dominant role in the modelled ENSO. To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (”) and the heat flux negative feedback (), are analysed here in 12 coupled GCMs. We find that the models generally underestimate both feedbacks, leading to an error compensation. The strength of is inversely related to the ENSO amplitude in the models and the latent heat and shortwave flux components of this feedback dominate. Furthermore, the shortwave component could help explain the model diversity in both overall and ENSO amplitude
    corecore