794 research outputs found

    Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet

    Get PDF
    Microbial processes that mineralize organic carbon and enhance solute production at the bed of polar ice sheets could be of a magnitude sufficient to affect global elemental cycles. To investigate the biogeochemistry of a polar subglacial microbial ecosystem, we analyzed water discharged during the summer of 2012 and 2013 from Russell Glacier, a land-terminating outlet glacier at the western margin of the Greenland Ice Sheet. The molecular data implied that the most abundant and active component of the subglacial microbial community at these marginal locations were bacteria within the order Methylococcales (59–100% of reverse transcribed (RT)-rRNA sequences). mRNA transcripts of the particulate methane monooxygenase (pmoA) from these taxa were also detected, confirming that methanotrophic bacteria were functional members of this subglacial ecosystem. Dissolved methane ranged between 2.7 and 83 μM in the subglacial waters analyzed, and the concentration was inversely correlated with dissolved oxygen while positively correlated with electrical conductivity. Subglacial microbial methane production was supported by δ(13)C-CH(4) values between −64‰ and −62‰ together with the recovery of RT-rRNA sequences that classified within the Methanosarcinales and Methanomicrobiales. Under aerobic conditions, >98% of the methane in the subglacial water was consumed over ∼30 days incubation at ∼4 °C and rates of methane oxidation were estimated at 0.32 μM per day. Our results support the occurrence of active methane cycling beneath this region of the Greenland Ice Sheet, where microbial communities poised in oxygenated subglacial drainage channels could serve as significant methane sinks

    Coulomb excitation of 73Ga

    Full text link
    The B(E2; Ii -> If) values for transitions in 71Ga and 73Ga were deduced from a Coulomb excitation experiment at the safe energy of 2.95 MeV/nucleon using post-accelerated beams of 71,73Ga at the REX-ISOLDE on-line isotope mass separator facility. The emitted gamma rays were detected by the MINIBALL-detector array and B(E2; Ii->If) values were obtained from the yields normalized to the known strength of the 2+ -> 0+ transition in the 120Sn target. The comparison of these new results with the data of less neutron-rich gallium isotopes shows a shift of the E2 collectivity towards lower excitation energy when adding neutrons beyond N = 40. This supports conclusions from previous studies of the gallium isotopes which indicated a structural change in this isotopical chain between N = 40 and N = 42. Combined with recent measurements from collinear laser spectroscopy showing a 1/2- spin and parity for the ground state, the extracted results revealed evidence for a 1/2-; 3/2- doublet near the ground state in 73 31Ga42 differing by at most 0.8 keV in energy

    A Strategy for the Selective Imaging of Glycans Using Caged Metabolic Precursors

    Get PDF
    Glycans can be imaged by metabolic labeling with azidosugars followed by chemical reaction with imaging probes; however, tissue-specific labeling is difficult to achieve. Here we describe a strategy for the use of a caged metabolic precursor that is activated for cellular metabolism by enzymatic cleavage. An N-azidoacetylmannosamine derivative caged with a peptide substrate for the prostate-specific antigen (PSA) protease was converted to cell-surface azido sialic acids in a PSA-dependent manner. The approach has applications in tissue-selective imaging of glycans for clinical and basic research purposes. © 2010 American Chemical Society

    Reactivity of Biarylazacyclooctynones in Copper-Free Click Chemistry

    Get PDF
    The 1,3-dipolar cycloaddition of cyclooctynes with azides, also called "copper-free click chemistry", is a bioorthogonal reaction with widespread applications in biological discovery. The kinetics of this reaction are of paramount importance for studies of dynamic processes, particularly in living subjects. Here we performed a systematic analysis of the effects of strain and electronics on the reactivity of cyclooctynes with azides through both experimental measurements and computational studies using a density functional theory (DFT) distortion/interaction transition state model. In particular, we focused on biarylazacyclooctynone (BARAC) because it reacts with azides faster than any other reported cyclooctyne and its modular synthesis facilitated rapid access to analogues. We found that substituents on BARAC's aryl rings can alter the calculated transition state interaction energy of the cycloaddition through electronic effects or the calculated distortion energy through steric effects. Experimental data confirmed that electronic perturbation of BARAC's aryl rings has a modest effect on reaction rate, whereas steric hindrance in the transition state can significantly retard the reaction. Drawing on these results, we analyzed the relationship between alkyne bond angles, which we determined using X-ray crystallography, and reactivity, quantified by experimental second-order rate constants, for a range of cyclooctynes. Our results suggest a correlation between decreased alkyne bond angle and increased cyclooctyne reactivity. Finally, we obtained structural and computational data that revealed the relationship between the conformation of BARAC's central lactam and compound reactivity. Collectively, these results indicate that the distortion/interaction model combined with bond angle analysis will enable predictions of cyclooctyne reactivity and the rational design of new reagents for copper-free click chemistry

    Prevalence of circadian misalignment and its association with depressive symptoms in delayed sleep phase disorder

    Get PDF
    Study Objective: To examine the prevalence of circadian misalignment in clinically diagnosed delayed sleep phase disorder (DSPD) and to compare mood and daytime functioning in those with and without a circadian basis for the disorder. Methods: One hundred and eighty-two DSPD patients aged 16–64 years, engaged in regular employment or school, underwent sleep–wake monitoring in the home, followed by a sleep laboratory visit for assessment of salivary dim light melatonin onset (DLMO). Based on the DLMO assessments, patients were classified into two groups: circadian DSPD, defined as DLMO occurring at or after desired bedtime (DBT), or non-circadian DSPD, defined as DLMO occurring before DBT. Results: One hundred and three patients (57%) were classified as circadian DSPD and 79 (43%) as non-circadian DSPD. DLMO occurred 1.66 hours later in circadian DSPD compared to non-circadian DSPD (p < .001). Moderate-severe depressive symptoms (Beck Depression Inventory-II) were more prevalent in circadian DSPD (14.0%) than in non-circadian DSPD (3.8%; p < .05). Relative to non-circadian DSPD patients, circadian DSPD patients had 4.31 times increased odds of at least mild depressive symptoms (95% CI 1.75 to 10.64; p < .01). No group differences were found for daytime sleepiness or function, but DSPD symptoms were rated by clinicians to be more severe in those with circadian DSPD. Conclusions: Almost half of patients clinically diagnosed with DSPD did not show misalignment between the circadian pacemaker and the DBT, suggesting that the reported difficulties initiating sleep at the DBT are unlikely to be explained by the (mis)timing of the circadian rhythm of sleep propensity. Circadian misalignment in DSPD is associated with increased depressive symptoms and DSPD symptom severity.Jade M. Murray, Tracey L. Sletten, Michelle Magee, Christopher Gordon, Nicole Lovato ... David J. Kennaway ... et al

    Functionalized Poly(3-hexylthiophene)s via Lithium–Bromine Exchange

    Get PDF
    Poly(3-hexylthiophene) (P3HT) is one of the most extensively investigated conjugated polymers and has been employed as the active material in many devices including field-effect transistors, organic photovoltaics and sensors. As a result, methods to further tune the properties of P3HT are desirable for specific applications. Herein, we report a facile postpolymerization modification strategy to functionalize the 4-position of commercially available P3HT in two simple steps–bromination of the 4-position of P3HT (Br–P3HT) followed by lithium−bromine exchange and quenching with an electrophile. We achieved near quantitative lithium–bromine exchange with Br–P3HT, which requires over 100 thienyl lithiates to be present on a single polymer chain. The lithiated-P3HT is readily combined with functional electrophiles, resulting in P3HT derivatives with ketones, secondary alcohols, trimethylsilyl (TMS) group, fluorine, or an azide at the 4-position. We demonstrated that the azide-modified P3HT could undergo Cu-catalyzed or Cu-free click chemistry, significantly expanding the complexity of the structures that can be appended to P3HT using this method.National Science Foundation (U.S.) (ECCS-0939514

    Collective and noncollective states in (120)Te

    Get PDF
    High-spin states in (120)Te were populated in the reaction (80)Se((48)Ca, alpha 4n)(120)Te at a beam energy of 207 MeV and gamma-ray coincidences were measured using the Gammasphere spectrometer. The previously known level scheme is extended to higher spin and new interband transitions and side-feeding branches are established. Five highly deformed rotational bands, extending up to almost I = 50, are observed for the first time. The bands are compared with similar structures found recently in neighboring nuclei. The experimental results are interpreted within the framework of the cranked Nilsson-Strutinsky model. Configuration assignments to several terminating states and to the high-spin bands are discussed
    corecore