15 research outputs found

    Wettability and Other Surface Properties of Modified Polymers

    Get PDF
    Surface wettability is one of the crucial characteristics for determining of a material’s use in specific application. Determination of wettability is based on the measurement of the material surface contact angle. Contact angle is the main parameter that characterizes the drop shape on the solid surface and is also one of the directly measurable properties of the phase interface. In this chapter, the wettability and its related properties of pristine and modified polymer foils will be described. The wettability depends on surface roughness and chemical composition. Changes of these parameters can adjust the values of contact angle and, therefore, wettability. In the case of pristine polymer materials, their wettability is unsuitable for a wide range of applications (such as tissue engineering, printing, and coating). Polymer surfaces can easily be modified by, e.g., plasma discharge, whereas the bulk properties remain unchanged. This modification leads to oxidation of the treated layer and creation of new chemical groups that mainly contain oxygen. Immediately after plasma treatment, the values of the contact angles of the modified polymer significantly decrease. In the case of a specific polymer, the strongly hydrophilic surface is created and leads to total spreading of the water drop. Wettability is strongly dependent on time from modification

    Improved Adhesion, Growth and Maturation of Vascular Smooth Muscle Cells on Polyethylene Grafted with Bioactive Molecules and Carbon Particles

    Get PDF
    High-density polyethylene (PE) foils were modified by an Ar+ plasma discharge and subsequent grafting with biomolecules, namely glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C) or BSA and C (BSA + C). As revealed by atomic force microscopy (AFM), goniometry and Rutherford Backscattering Spectroscopy (RBS), the surface chemical structure and surface morphology of PE changed dramatically after plasma treatment. The contact angle decreased for the samples treated by plasma, mainly in relation to the formation of oxygen structures during plasma irradiation. A further decrease in the contact angle was obvious after glycine and PEG grafting. The increase in oxygen concentration after glycine and PEG grafting proved that the two molecules were chemically linked to the plasma-activated surface. Plasma treatment led to ablation of the PE surface layer, thus the surface morphology was changed and the surface roughness was increased. The materials were then seeded with vascular smooth muscle cells (VSMC) derived from rat aorta and incubated in a DMEM medium with fetal bovine serum. Generally, the cells adhered and grew better on modified rather than on unmodified PE samples. Immunofluorescence showed that focal adhesion plaques containing talin, vinculin and paxillin were most apparent in cells on PE grafted with PEG or BSA + C, and the fibres containing α-actin, β-actin or SM1 and SM2 myosins were thicker, more numerous and more brightly stained in the cells on all modified PE samples than on pristine PE. An enzyme-linked immunosorbent assay (ELISA) revealed increased concentrations of focal adhesion proteins talin and vinculin and also a cytoskeletal protein β-actin in cells on PE modified with BSA + C. A contractile protein α-actin was increased in cells on PE grafted with PEG or Gly. These results showed that PE activated with plasma and subsequently grafted with bioactive molecules and colloidal C particles, especially with PEG and BSA + C, promotes the adhesion, proliferation and phenotypic maturation of VSMC

    Laser modification of graphene oxide layers

    Get PDF
    The effect of linearly polarized laser irradiation with various energy densities was successfully used for reduction of graphene oxide (GO). The ion beam analytical methods (RBS, ERDA) were used to follow the elemental composition which is expected as the consequence of GO reduction. The chemical composition analysis was accompanied by structural study showing changed functionalities in the irradiated GO foils using spectroscopy techniques including XPS, FTIR and Raman spectroscopy. The AFM was employed to identify the surface morphology and electric properties evolution were subsequently studied using standard two point method measurement. The used analytical methods report on reduction of irradiated graphene oxide on the surface and the decrease of surface resistivity as a growing function of the laser beam energy density

    Influence of Biomimetically Mineralized Collagen Scaffolds on Bone Cell Proliferation and Immune Activation

    No full text
    Collagen, as the main component of connective tissue, is frequently used in various tissue engineering applications. In this study, porous sponge-like collagen scaffolds were prepared by freeze-drying and were then mineralized in a simulated body fluid. The mechanical stability was similar in both types of scaffolds, but the mineralized scaffolds (MCS) contained significantly more calcium, magnesium and phosphorus than the unmineralized scaffolds (UCS). Although the MCS contained a lower percentage (~32.5%) of pores suitable for cell ingrowth (113–357 μm in diameter) than the UCS (~70%), the number of human-osteoblast-like MG-63 cells on days 1, 3 and 7 after seeding was higher on MCS than on UCS, and the cells penetrated deeper into the MCS. The cell growth in extracts prepared by eluting the scaffolds for 7 days in a cell culture medium was also markedly higher in the MCS extracts, as indicated by real-time monitoring in the sensory xCELLigence system for 7 days. From this point of view, MCS are more promising for bone tissue engineering than UCS. However, MCS evoked a more pronounced inflammatory response than UCS, as indicated by the production of tumor necrosis factor-alpha (TNF-α) in macrophage-like RAW 264.7 cells in cultures on these scaffolds

    Synthesis of Porous Polydimethylsiloxane Gold Nanoparticles Composites by a Single Step Laser Ablation Process

    No full text
    Typically, polymeric composites containing nanoparticles are realized by incorporating pre-made nanoparticles into a polymer matrix by using blending solvent or by the reduction of metal salt dispersed in the polymeric matrix. Generally, the production of pre-made Au NPs occurs in liquids with two-step processes: producing the gold nanoparticles first and then adding them to the liquid polymer. A reproducible method to synthetize Au nanoparticles (NPs) into polydimethylsiloxane (PDMS) without any external reducing or stabilizing agent is a challenge. In this paper, a single-step method is proposed to synthetize nanoparticles (NPs) and at the same time to realize reproducible porous and bulk composites using laser ablation in liquid. With this single-step process, the gold nanoparticles are therefore produced directly in the liquid polymer. The optical properties of the suspensions of AuNPs in distilled water and in the curing agent have been analyzed by the UV-VIS spectroscopy, employed in the transmission mode, and compared with those of the pure curing agent. The electrical dc conductivity of the porous PDMS/Au NPs nanocomposites has been evaluated by the I–V characteristics. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis have monitored the composition and morphology of the so-obtained composites and the size of the fabricated Au nanoparticles. Atomic force microscopy (AFM) has been used to determine the roughness of the bulk PDMS and its Au NP composites

    Pulsed Laser Deposition and Laser-Induced Backward Transfer to Modify Polydimethylsiloxane

    No full text
    Polydimethylsiloxane (PDMS) is a silicone-elastomer that owes its large application in the field of stretchable electronics to its chemical and thermal stability, transparency, flexibility, non-toxicity, compatibility, and low cost. PDMS is a versatile material because it can be used both as an elastic substrate and, after functionalization, as an active material for the design of stretchable electronics. One possible route for the functionalization of PDMS, thus becoming an active material together with numerous metals and semiconductors, is the embedding of conductive nanomaterials. Presently, pulsed laser deposition (PLD) and laser-induced backward transfer (LIBT) are used to deposit carbon- based material on polydimethylsiloxane. In this study, we explore and compare the surface treatments, advantages, and disadvantages of both different employed techniques in different environments. The modification of the wettability, elasticity, morphology, composition, and optical characteristics of polydimethylsiloxane will be evaluated by surface techniques such as scanning electron microscopy, Rutherford backscattering spectrometry, and the sessile drop method

    Povrchová modifikace různých krystalických facet ZnO vysokoenergetickým ozářením těžkými ionty

    No full text
    Self-assembled surface nanoscale structures on various ZnO facets are excellent templates for the deposition of semiconductor quantum dots and manipulation with surface optical transparency. In this work, we have modified the surface of c-, m- and a-plane ZnO single-crystals by high-energy W-ion irradiation with an energy of 27 MeV to observe the aspects of surface morphology on the optical properties. We kept ion fluences in the range from 5 x 10(9) cm(-2) to 5 x 10(11) cm(-2) using the mode of single-ion implantation and the overlapping impact mode to see the effect of various regimes on surface modification. Rutherford backscattering spectroscopy in the channeling mode (RBS-C) and Raman spectroscopy have identified a slightly growing Zn-sublattice disorder in the irradiated samples with a more significant enhancement for the highest irradiation fluence. Simultaneously, the strong suppression of the main Raman modes and the propagation of the modes corresponding to polar Zn-O vibrations indicate disorder mainly in the O-sublattice in non-polar facets. The surface morphology, analysed by atomic force microscopy (AFM), shows significant changes after ion irradiation. The c- and a-plane ZnO exhibit the formation of small grains on the surface. The m-plane ZnO forms a sponge-like surface for lower fluences and grains for the highest fluence. The surface roughness itself increases with the irradiation fluence as shown by AFM measurement as well as spectroscopic ellipsometry (SE) analysis. The damage caused by high-energy irradiation leads to non-radiative processes and suppression of the near-band-edge peak as well as the deep-level emission peak in the photoluminescence spectra. Furthermore, the refraction index n and the extinction coefficient k of irradiated samples, determined by SE, have features corresponding to the particular exciton states blurred and are slightly lower in the optical bandgap region especially for the polar c-plane ZnO facet.Samostatně sestavené povrchové nanostruktury na různých ZnO fasetách jsou vynikající šablony pro depozici polovodičových kvantových teček a manipulaci s povrchovou optickou transparentností. V této práci jsme upravili povrch c-, m- a a-rovinných monokrystalů ZnO vysokoenergetickým W-iontovým ozářením s energií 27 MeV, abychom sledovali aspekty povrchové morfologie na optických vlastnostech. Udržovali jsme fluence iontů v rozsahu od 5 x 10(9) cm(-2) do 5 x 10(11) cm(-2) pomocí režimu jednoiontové implantace a režimu překrývajícího se nárazu, abychom viděli účinek různých režimy povrchových úprav. Rutherfordova spektroskopie zpětného rozptylu v kanálovém módu (RBS-C) a Ramanova spektroskopie identifikovaly mírně rostoucí poruchu podmřížky Zn v ozařovaných vzorcích s výraznějším zesílením pro nejvyšší fluence ozáření. Současně silné potlačení hlavních Ramanových módů a šíření módů odpovídajících polárním Zn-O vibracím svědčí o nepořádku především v O-podmřížce u nepolárních faset. Morfologie povrchu, analyzovaná mikroskopií atomárních sil (AFM), vykazuje významné změny po ozáření ionty. C- a a-rovina ZnO vykazuje tvorbu malých zrn na povrchu. M-rovina ZnO tvoří houbovitý povrch pro nižší fluence a zrna pro nejvyšší fluence. Samotná drsnost povrchu se zvyšuje s fluencem ozáření, jak ukazuje měření AFM a také analýza spektroskopické elipsometrie (SE). Poškození způsobené vysokoenergetickým ozářením vede k neradiačním procesům a potlačení píku na okraji pásma i píku hloubkové emise ve fotoluminiscenčním spektru. Dále, index lomu n a extinkční koeficient k ozářených vzorků, stanovené pomocí SE, mají znaky odpovídající konkrétním excitonovým stavům rozmazané a jsou mírně nižší v oblasti optické mezery, zejména pro fasetu ZnO v polární rovině c

    Modification of Chitosan–Methylcellulose Composite Films with <i>meso</i>-Tetrakis(4-sulfonatophenyl)porphyrin

    No full text
    Polysaccharide films containing chitosan, methylcellulose, and a mixture of these polysaccharides in various ratios were prepared and modified with <i>meso</i>-tetrakis­(4-sulfonatophenyl)­porphyrin in an aqueous medium at pH 7. The modified films were compared with the initial films using spectroscopic methods and microscopic imaging. Electronic (UV–vis absorption, electronic circular dichroism (ECD)) and vibrational (FTIR and Raman) spectra showed that the porphyrin macrocycles had a strong affinity toward chitosan and did not interact with the methylcellulose. The total porphyrin uptake depended on the chitosan: methylcellulose ratio and pure methylcellulose films did not retain porphyrin macrocycles. ECD measurements detected the presence of optically active porphyrin species bound to the films. SEM and AFM images confirmed that the porphyrin macrocycles caused structural changes on the film surface and within the film layer

    Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Get PDF
    The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE) was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly), polyethylene glycol (PEG), bovine serum albumin (BSA), colloidal carbon particles (C), or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs), the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted

    Antimicrobial Properties of Palladium and Platinum Nanoparticles: A New Tool for Combating Food-Borne Pathogens

    No full text
    Although some metallic nanoparticles (NPs) are commonly used in the food processing plants as nanomaterials for food packaging, or as coatings on the food handling equipment, little is known about antimicrobial properties of palladium (PdNPs) and platinum (PtNPs) nanoparticles and their potential use in the food industry. In this study, common food-borne pathogens Salmonella enterica Infantis, Escherichia coli, Listeria monocytogenes and Staphylococcus aureus were tested. Both NPs reduced viable cells with the log10 CFU reduction of 0.3–2.4 (PdNPs) and 0.8–2.0 (PtNPs), average inhibitory rates of 55.2–99% for PdNPs and of 83.8–99% for PtNPs. However, both NPs seemed to be less effective for biofilm formation and its reduction. The most effective concentrations were evaluated to be 22.25–44.5 mg/L for PdNPs and 50.5–101 mg/L for PtNPs. Furthermore, the interactions of tested NPs with bacterial cell were visualized by transmission electron microscopy (TEM). TEM visualization confirmed that NPs entered bacteria and caused direct damage of the cell walls, which resulted in bacterial disruption. The in vitro cytotoxicity of individual NPs was determined in primary human renal tubular epithelial cells (HRTECs), human keratinocytes (HaCat), human dermal fibroblasts (HDFs), human epithelial kidney cells (HEK 293), and primary human coronary artery endothelial cells (HCAECs). Due to their antimicrobial properties on bacterial cells and no acute cytotoxicity, both types of NPs could potentially fight food-borne pathogens
    corecore